182 resultados para JNI(Java Native Interface)
Resumo:
Modularity has been suggested to be connected to evolvability because a higher degree of independence among parts allows them to evolve as separate units. Recently, the Escoufier RV coefficient has been proposed as a measure of the degree of integration between modules in multivariate morphometric datasets. However, it has been shown, using randomly simulated datasets, that the value of the RV coefficient depends on sample size. Also, so far there is no statistical test for the difference in the RV coefficient between a priori defined groups of observations. Here, we (1), using a rarefaction analysis, show that the value of the RV coefficient depends on sample size also in real geometric morphometric datasets; (2) propose a permutation procedure to test for the difference in the RV coefficient between a priori defined groups of observations; (3) show, through simulations, that such a permutation procedure has an appropriate Type I error; (4) suggest that a rarefaction procedure could be used to obtain sample-size-corrected values of the RV coefficient; and (5) propose a nearest-neighbor procedure that could be used when studying the variation of modularity in geographic space. The approaches outlined here, readily extendable to non-morphometric datasets, allow study of the variation in the degree of integration between a priori defined modules. A Java application – that will allow performance of the proposed test using a software with graphical user interface – has also been developed and is available at the Morphometrics at Stony Brook Web page (http://life.bio.sunysb.edu/morph/).
Resumo:
Human factors such as distraction, fatigue, alcohol and drug use are generally ignored in car-following (CF) models. Such ignorance overestimates driver capability and leads to most CF models’ inability in realistically explaining human driving behaviors. This paper proposes a novel car-following modeling framework by introducing the difficulty of driving task measured as the dynamic interaction between driving task demand and driver capability. Task difficulty is formulated based on the famous Task Capability Interface (TCI) model, which explains the motivations behind driver’s decision making. The proposed method is applied to enhance two popular CF models: Gipps’ model and IDM, and named as TDGipps and TDIDM respectively. The behavioral soundness of TDGipps and TDIDM are discussed and their stabilities are analyzed. Moreover, the enhanced models are calibrated with the vehicle trajectory data, and validated to explain both regular and human factor influenced CF behavior (which is distraction caused by hand-held mobile phone conversation in this paper). Both the models show better performance than their predecessors, especially in presence of human factors.
Resumo:
This paper aims to trace surface evolution in the wheel-rail interface using data obtained from a twin-disc testing machine and the surface replication technique. Changes in the surface profile of the rail testing disc are explicitly analysed according to the wear mechanism, which helps elaborate a better understanding of the attrition of asperities during the wearing-in process of surface modification. The surface profile amplitude was seen to decrease during the initial running-in phase of the experiment cycle, and after reaching a saturation value, the profile amplitude then increased. Ultimately the results show that grinding will roughen the rail surface and the wheel-rail contact conditions will then remove this surface damage to some saturation value of the profile height. The variation in the rail surface profile beyond this point is then only dependant on the contact conditions which exist between the wheel and rail during normal operation.
Resumo:
This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.
Resumo:
There is an urgent need to develop crops that can withstand future climates. Results from this thesis demonstrated that a native Australian resurrection grass exhibits structural, physiological and metabolic strategies to tolerate drying. These strategies may be utilized for the generation of stress tolerant crops.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behaviour change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, this research seeks to use human factors related theories and practices to inform the design and evaluation of an in-vehicle Human Machine Interface (HMI) providing real-time driver feedback with the aim of improving both fuel efficiency and safety.
Resumo:
The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aegypti and Aedes albopictus (Skuse), which is naturally infected with Wolbachia and considered a secondary vector for DENV. The mosquito species Aedes notoscriptus (Skuse) is highly prevalent in Australia, including in areas where DENV outbreaks have been recorded. The mosquito has been implicated in the transmission of Ross River and Barmah Forest viruses, but not DENV. We investigated whether Wolbachia naturally infects this mosquito species and whether it has an impact on the ability of Ae. notoscriptus to transmit DENV. We show, for the first time, that Ae. notoscriptus is naturally infected with a strain of Wolbachia that belongs to supergroup B and is localized only in the ovaries. However, Wolbachia infection in Ae. notoscriptus did not induce resistance to DENV and had no effect on overall DENV infection rate or titer. The presence of a native Wolbachia in Ae. notoscriptus cannot explain why this mosquito is an ineffective vector of DENV.
Resumo:
Background Project archives are becoming increasingly large and complex. On construction projects in particular, the increasing amount of information and the increasing complexity of its structure make searching and exploring information in the project archive challenging and time-consuming. Methods This research investigates a query-driven approach that represents new forms of contextual information to help users understand the set of documents resulting from queries of construction project archives. Specifically, this research extends query-driven interface research by representing three types of contextual information: (1) the temporal context is represented in the form of a timeline to show when each document was created; (2) the search-relevance context shows exactly which of the entered keywords matched each document; and (3) the usage context shows which project participants have accessed or modified a file. Results We implemented and tested these ideas within a prototype query-driven interface we call VisArchive. VisArchive employs a combination of multi-scale and multi-dimensional timelines, color-coded stacked bar charts, additional supporting visual cues and filters to support searching and exploring historical project archives. The timeline-based interface integrates three interactive timelines as focus + context visualizations. Conclusions The feasibility of using these visual design principles is tested in two types of project archives: searching construction project archives of an educational building project and tracking of software defects in the Mozilla Thunderbird project. These case studies demonstrate the applicability, usefulness and generality of the design principles implemented.
Resumo:
The adsorption of proteins at the interface between two immiscible electrolyte solutions has been found to be key to their bioelectroactivity at such interfaces. Combined with interfacial complexation of organic phase anions by cationic proteins, this adsorption process may be exploited to achieve nanomolar protein detection. In this study, replica exchange molecular dynamics simulations have been performed to elucidate for the first time the molecular mechanism of adsorption and subsequent unfolding of hen egg white lysozyme at low pH at a polarized 1,2-dichloroethane/water interface. The unfolding of lysozyme was observed to occur as soon as it reaches the organic−aqueous interface,which resulted in a number of distinct orientations at the interface. In all cases, lysozyme interacted with the organic phase through regions rich in nonpolar amino acids, such that the side chains are directed toward the organic phase, whereas charged and polar residues were oriented toward the aqueous phase. By contrast, as expected, lysozyme in neat water at low pH does not exhibit significant structural changes. These findings demonstrate the key influence of the organic phase upon adsorption of lysozyme under the influence of an electric field, which results in the unfolding of its structure.
Resumo:
House loss during unplanned bushfires is a complex phenomenon where design, configuration, material and siting, can significantly influence the loss. In collaboration with the Bushfire Cooperative Research Centre the CSIRO has developed a tool to assess the vulnerability of a specific house at the urban interface. The tool is based on a spatial profiling of urban assets including their design, material, surrounding objects and their relationship amongst one another. The analysis incorporates both probabilistic and deterministic parameters, and is based on the impact of radiant heat, flame and embers on the surrounding elements and the structure itself. It provides a breakdown of the attributes and design parameters that contribute to the vulnerability level. This paper describes the tool which allows the user to explore the vulnerability of a house to varying levels of bushfire attacks. The tool is aimed at government agencies interested in building design, town planning and community education for bushfire risk mitigation.