263 resultados para Infrared radiation
Resumo:
Purpose The aim of this case study is to describe clinical staff perceptions of implementing a person-centred model of nursing in an outpatient radiotherapy treatment department, using a Primary Nursing/Collaborative Practice framework. The questions are: 1) what are the nursing and radiotherapy staff perspectives of the changed model of care, 2) what factors impacted on aspects of the evolving model?, and 3) how was interdisciplinary collaboration influenced by the new model? Methods An instrumental case study addressed the multiple perspectives of several radiotherapy health professionals, within a qualitative approach, to assess the new model of nursing care. Interview data were obtained from thirteen clinical staff over a six month period approximately one year after the model was implemented. Results The new model supports nurses to work more closely with the individual patient, with some perceived positive patient outcomes. Nurses reported increased satisfaction with their work, more autonomy and responsibility, and improved working relationships with medical staff. They also became more aware of the holistic approach to support positive patient outcomes. However, this study acknowledged that education was required for nurses to provide holistic care, especially in the context of complex interdisciplinary relationships. Conclusions A person-centred nursing approach in radiotherapy represents a radical change to the functional approach, providing some benefits for patients. However, the challenges of providing holistic care in the context of complex interdisciplinary relationships are evident, and this study acknowledges the importance of a team approach to addressing changes in practice in the future.
Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage
Resumo:
The determination of the characteristics of articular cartilage such as thickness, stiffness and swelling, especially in the form that can facilitate real-time decisions and diagnostics is still a matter for research and development. This paper correlates near infrared spectroscopy with mechanically measured cartilage thickness to establish a fast, non-destructive, repeatable and precise protocol for determining this tissue property. Statistical correlation was conducted between the thickness of bovine cartilage specimens (n = 97) and regions of their near infrared spectra. Nine regions were established along the full absorption spectrum of each sample and were correlated with the thickness using partial least squares (PLS) regression multivariate analysis. The coefficient of determination (R2) varied between 53 and 93%, with the most predictive region (R2 = 93.1%, p < 0.0001) for cartilage thickness lying in the region (wavenumber) 5350–8850 cm−1. Our results demonstrate that the thickness of articular cartilage can be measured spectroscopically using NIR light. This protocol is potentially beneficial to clinical practice and surgical procedures in the treatment of joint disease such as osteoarthritis.
Resumo:
Purpose Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of 15 applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially-costly over estimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls and other walls) by 20 evaluating three different bunker designs. Methods Radiation survey measurements of primary, scattered and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0 to 330o, to 25 assess the effects of radiation beam direction on the results. Results For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage. Conclusions Results of this study suggest that IMRT workload corrections are unnecessary, for 30 survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in this study are repeated for the bunker in question. Reduction of the correction factor for other secondary barrier survey measurements is not recommended unless the contribution from leakage is separetely evaluated.
Resumo:
This research developed and scientifically validated a new ultrasound transmission computed tomography system with the aim of quantitative assessment of a polymer gel dosimeter including dose response verification of ultrasonic parameters of attenuation, velocity and broadband ultrasound attenuation (BUA). This work was the first to investigate and report ultrasound frequency dependent attenuation in a gel dosimeter, demonstrating a dose dependence.
Resumo:
This thesis investigates the use of near infrared (NIR) spectroscopic methods for rapid measurement of nutrient elements in mill mud and mill ash. Adoption of NIR-based analyses for carbon, nitrogen, phosphorus, potassium and silicon will allow Australian sugarcane farmers to comply with recent legislative changes, and act within recommended precision farming frameworks. For these analyses, NIR spectroscopic methods surpass several facets of traditional wet chemistry techniques, dramatically reducing costs, required expertise and chemical exposure, while increasing throughput and access to data. Further, this technology can be applied in various modes, including laboratory, at-line and on-line installations, allowing targeted measurement.
Resumo:
We have studied the mineral olmiite CaMn\[SiO3(OH)](OH) which forms a series with its calcium analogue poldevaartite CaCa\[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis , Raman and infrared spectroscopy. Chemical analysis shows the mineral is pure and contains only calcium and manganese in the formula. Thermogravimetric analysis proves the mineral decomposes at 502°C with a mass loss of 8.8% compared with the theoretical mass loss of 8.737%. A strong Raman band at 853 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations.Two intense Raman bands observed at 3511 and 3550 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of olmiite.
Resumo:
We have studied the mineral hydroboracite CaMg[B3O4(OH)3]2∙3H2O using electron microscopy and vibrational spectroscopy. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm-1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1039 cm-1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm-1 are attributed to the BOH in-plane bending modes. Raman bands at 825 and 925 cm-1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The sharp Raman peak at 925 cm-1 is from the 11-B component such a mode, then it should have a smaller 10-B satellite near (1.03)x(925) = 952 cm-1, and indeed a small peak at 955 is observed. Four sharp Raman bands observed at 3371, 3507, 3563 and 3632 cm-1 are attributed to the stretching vibrations of hydroxyl units. The broad Raman bands at 3076, 3138, 3255, 3384 and 3551 cm-1 are assigned to water stretching vibrations. Infrared bands at 3367, 3505, 3559 and 3631 cm-1are assigned to the stretching vibration of the hydroxyl units. Broad infrared bands at 3072 and 3254 cm-1 are assigned to water stretching vibrations. Infrared bands at 1318, 1349, 1371, 1383 cm-1 are assigned to the antisymmetric stretching vibrations of trigonal boron
Resumo:
The incidences of skin cancers resulting from chronic ultraviolet radiation (UVR) exposure are on the incline both in Australia and globally. Hence, the cellular and molecular pathways associated with UVR-induced photocarcinogenesis urgently need to be elucidated, in order to develop more robust preventative and treatment strategies against skin cancers. In vitro investigations into the effects of UVR (in particular the highly-mutagenic UVB wavelength) have, to date, mainly involved the use of cell culture and animal models. However, these models possess biological disparities to native skin, which to some extent have limited their relevance to the in vivo situation. To address this, we characterised a 3-dimensional, tissue-engineered human skin equivalent (HSE) model (consisting of primary human keratinocytes cultured on a dermal-derived scaffold) as a representation of a more physiologically-relevant platform to study keratinocyte responses to UVB. Significantly, we demonstrate that this model retains several important epidermal properties of native skin. Moreover, UVB-irradiation of the HSE constructs was shown to induce key markers of photodamage in the HSE keratinocytes, including the formation of cyclobutane pyrimidine dimers, the activation of apoptotic pathways, the accumulation of p53 and the secretion of inflammatory cytokines. Importantly, we also demonstrate that the UVB-exposed HSE constructs retain the capacity for epidermal repair and regeneration following photodamage. Together, our results demonstrate the potential of this skin equivalent model as a tool to study various aspects of the acute responses of human keratinocytes to UVB radiation damage.
Resumo:
Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.
Resumo:
Background Radiation-induced skin reaction (RISR) is a common side effect that affects the majority of cancer patients receiving radiation treatment. RISR is often characterised by swelling,redness, pigmentation, fibrosis, and ulceration, pain, warmth, burning, and itching of the skin. The aim of this systematic review was to assess the effects of interventions which aim to prevent or manage RISR in people with cancer. Methods We searched the following databases up to November 2012: Cochrane Skin Group Specialised Register, CENTRAL (2012, Issue 11), MEDLINE (from 1946), EMBASE (from 1974), PsycINFO (from 1806), CINAHL (from 1981) and LILACS (from 1982). Randomized controlled trials evaluating interventions for preventing or managing RISR in cancer patients were included. The primary outcomes were development of RISR, and levels of RISR and symptom severity. Secondary outcomes were time taken to develop erythema or dry desquamation; quality of life; time taken to heal, a number of skin reaction and symptom severity measures; cost, participant satisfaction; ease of use and adverse effects. Where appropriate, we pooled results of randomized controlled trials using mean differences (MD) or odd ratios (OR) with 95% confidence intervals (CI). Results Forty-seven studies were included in this review. These evaluated six types of interventions (oral systemic medications; skin care practices; steroidal topical therapies; non-steroidal topical therapies; dressings and other). Findings from two meta-analyses demonstrated significant benefits of oral Wobe-Mugos E for preventing RISR (OR 0.13 (95% CI 0.05 to 0.38)) and limiting the maximal level of RISR (MD −0.92 (95% CI −1.36 to −0.48)). Another meta-analysis reported that wearing deodorant does not influence the development of RISR (OR 0.80 (95% CI 0.47 to 1.37)). Conclusions Despite the high number of trials in this area, there is limited good, comparative research that provides definitive results suggesting the effectiveness of any single intervention for reducing RISR. More research is required to demonstrate the usefulness of a wide range of products that are being used for reducing RISR. Future efforts for reducing RISR severity should focus on promising interventions, such as Wobe-Mugos E and oral zinc.
Resumo:
In vitro studies indicate that folate in collected human blood is vulnerable to degradation after exposure to ultraviolet (UV) radiation. This has raised concerns about folate depletion in individuals with high sun exposure. Here, we investigate the association between personal solar UV radiation exposure and serum folate concentration, using a three-week prospective study that was undertaken in females aged 18–47 years in Brisbane, Australia (153 E, 27 S). Following two weeks of supplementation with 500 μg of folic acid daily, the change in serum folate status was assessed over a 7-day period of measured personal sun exposure. Compared to participants with personal UV exposures of <200 Joules per day, participants with personal UV exposures of 200–599 and >600 Joules per day had significantly higher depletion of serum folate (p = 0.015). Multivariable analysis revealed personal UV exposure as the strongest predictor accounting for 20% of the overall change in serum folate (Standardised B = −0.49; t = −3.75; p = <0.01). These data show that increasing solar UV radiation exposures reduces the effectiveness of folic acid supplementation. The consequences of this association may be most pronounced for vulnerable individuals, such as women who are pregnant or of childbearing age with high sun exposures.
Resumo:
Background Radiation Therapy students at Queensland University of Technology undertake clinical placement across a wide range of sites Interpersonal skills with clinical staff and patients are an essential component: – Lectures – Role playing – Expert patient input
Resumo:
This work aims to contribute to the reliability and integrity of perceptual systems of unmanned ground vehicles (UGV). A method is proposed to evaluate the quality of sensor data prior to its use in a perception system by utilising a quality metric applied to heterogeneous sensor data such as visual and infrared camera images. The concept is illustrated specifically with sensor data that is evaluated prior to the use of the data in a standard SIFT feature extraction and matching technique. The method is then evaluated using various experimental data sets that were collected from a UGV in challenging environmental conditions, represented by the presence of airborne dust and smoke. In the first series of experiments, a motionless vehicle is observing a ’reference’ scene, then the method is extended to the case of a moving vehicle by compensating for its motion. This paper shows that it is possible to anticipate degradation of a perception algorithm by evaluating the input data prior to any actual execution of the algorithm.