294 resultados para Industrial chemical
Resumo:
Saccharification of sugarcane bagasse pretreated at the pilot-scale with different processes (in combination with steam-explosion) was evaluated. Maximum glucan conversion with Celluclast 1.5 L (15–25 FPU/g glucan) was in the following order: glycerol/HCl > HCl > H2SO4 > NaOH, with the glycerol system achieving ∼100% conversion. Surprisingly, the NaOH substrate achieved optimum saccharification with only 8 FPU/g glucan. Glucan conversions (3.6–6%) obtained with mixtures of endo-1,4-β-glucanase (EG) and β-glucosidase (βG) for the NaOH substrate were 2–6 times that of acid substrates. However, glucan conversions (15–60%) obtained with mixtures of cellobiohydrolase (CBH I) and βG on acidified glycerol substrate were 10–30% higher than those obtained for NaOH and acid substrates. The susceptibility of the substrates to enzymatic saccharification was explained by their physical and chemical attributes. Acidified glycerol pretreatment offers the opportunity to simplify the complexity of enzyme mixtures required for saccharification of lignocellulosics.
Resumo:
Liuwei Dihuang Wan (LWD), a classic Chinese medicinal formulae, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. It has attracted increasingly much attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive and reliable ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight high-definition mass spectrometry (UPLC-ESI-Q-TOF-MS) method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLCTM HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on UPLC-ESI-Q-TOF-MS has been successfully developed for globally identifying multiple-constituents of traditional Chinese medicine prescriptions. This is the first report on systematic analysis of the chemical constituents of LDW. This article is protected by copyright. All rights reserved.
Resumo:
China is experiencing rapid progress in industrialization, with its own rationale toward industrial land development based on a deliberate change from an extensive to intensive form of urban land use. One result has been concerted attempts by local government to attract foreign investment by a low industrial land price strategy, which has resulted in a disproportionally large amount of industrial land within the total urban land use structure at the expense of the urban sprawl of many cities. This paper first examines “Comparable Benchmark Price as Residential land use” (CBPR) as the theoretical basis of the low industrial land price phenomenon. Empirical findings are presented from a case study based on data from Jinyun County, China. These data are analyzed to reveal the rationale of industrial land price from 2000 to 2010 concerning the CBPR model. We then explore the causes of low industrial land prices in the form of a “Centipede Game Model”, involving two neighborhood regions as “major players” to make a set of moves (or strategies). When one of the players unilaterally reduces the land price to attract investment with the aim to maximize profits arising from the revenues generated from foreign investment and land premiums, a two-player price war begins in the form of a dynamic game, the effect of which is to produce a downward spiral of prices. In this context, the paradox of maximizing profits for each of the two players are not accomplished due to the inter-regional competition of attracted investment leading to a lose-lose situation for both sides’ in competing for land premium revenues. A short-term solution to the problem is offered involving the establishment of inter-regional cooperative partnerships. For the longer term, however, a comprehensive reform of the local financial system, more adroit regional planning and an improved means of evaluating government performance is needed to ensure the government's role in securing pubic goods is not abandoned in favor of one solely concerned with revenue generation.
Resumo:
The main contribution of this project was to investigate power electronics technology in designing and developing high frequency high power converters for industrial applications. Therefore, the research was conducted at two levels; first at system level which mainly encapsulated the circuit topology and control scheme and second at application level which involves with real-world applications. Pursuing these objectives, varied topologies have been developed and proposed within this research. The main aim was to resolving solid-state switches limited power rating and operating speed while increasing the system flexibility considering the application characteristics. The developed new power converter configurations were applied to pulsed power and high power ultrasound applications for experimental validation.
Resumo:
Generating nano-sized materials of a controlled size and chemical composition is essential for the manufacturing of materials with enhanced properties on an industrial scale, as well as for research purposes, such as toxicological studies. Among the generation methods for airborne nanoparticles (also known as aerosolisation methods), liquid-phase techniques have been widely applied due to the simplicity of their use and their high particle production rate. The use of a collison nebulizer is one such technique, in which the atomisation takes place as a result of the liquid being sucked into the air stream and injected toward the inner walls of the nebulizer reservoir via nozzles, before the solution is dispersed. Despite the above-mentioned benefits, this method also falls victim to various sources of impurities (Knight and Petrucci 2003; W. LaFranchi, Knight et al. 2003). Since these impurities can affect the characterization of the generated nanoparticles, it is crucial to understand and minimize their effect.
Resumo:
Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.
Resumo:
Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.
Resumo:
Chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics (aMD) simulations and X-ray Photoelectron Spectroscopy (XPS). The molecular dynamics simulations showed rapid and spontaneous decomposition of the ionic liquid anion, with subsequent formation of long-lived species such as lithium fluoride. The simulations also revealed the cation to retain its structure by generally moving away from the lithium surface. The XPS experiments showed evidence of decomposition of the anion, consistent with the aMD simulations and also of cation decomposition and it is envisaged that this is due to the longer time scale for the XPS experiment compared to the time scale of the aMD simulation. Overall experimental results confirm the majority of species suggested by the simulation. The rapid chemical decomposition of the ionic liquid was shown to form a solid electrolyte interphase composed of the breakdown products of the ionic liquid components in the absence of an applied voltage.
Resumo:
The effect of storage time on the cyclability of lithium electrodes in an ionic liquid electrolyte, namely 0.5 m LiBF4 in N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl)imide, [C3mpyr+][FSI–], was investigated. A chemical interaction was observed which is time dependent and results in a morphology change of the Li surface due to build up of passivation products over a 12-day period. The formation of this layer significantly impacts on the Li electrode resistance before cycling and the charging/discharging process for symmetrical Li|0.5 m LiBF4 in [C3mpyr+][FSI–]|Li coin cells. Indeed it was found that introducing a rest period between cycling, and thereby allowing the chemical interaction between the Li electrode and electrolyte to take place, also impacted on the charging/discharging process. For all Li surface treatments the electrode resistance decreased after cycling and was due to significant structural rearrangement of the surface layer. These results suggest that careful electrode pretreatment in a real battery system will be required before operation.
Resumo:
Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.
Resumo:
This thesis reports a comprehensive study on the physical and chemical properties of airborne particles in Brisbane, especially around schools. The sources and potential toxicity of the particles were identified, enabling an assessment of the contributing factors to children's exposure at school. The results from this thesis give a quantitative estimate of the range of airborne particles that children are exposed to at urban schools with different traffic conditions.
Resumo:
Chemical vapor deposition (CVD) is widely utilized to synthesize graphene with controlled properties for many applications, especially when continuous films over large areas are required. Although hydrocarbons such as methane are quite efficient precursors for CVD at high temperature (∼1000 °C), finding less explosive and safer carbon sources is considered beneficial for the transition to large-scale production. In this work, we investigated the CVD growth of graphene using ethanol, which is a harmless and readily processable carbon feedstock that is expected to provide favorable kinetics. We tested a wide range of synthesis conditions (i.e., temperature, time, gas ratios), and on the basis of systematic analysis by Raman spectroscopy, we identified the optimal parameters for producing highly crystalline graphene with different numbers of layers. Our results demonstrate the importance of high temperature (1070 °C) for ethanol CVD and emphasize the significant effects that hydrogen and water vapor, coming from the thermal decomposition of ethanol, have on the crystal quality of the synthesized graphene.
Resumo:
Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.
Resumo:
Particles of two isolates of subterranean clover red leaf virus were purified by a method in which infected plant tissue was digested with an industrial-grade cellulase, Celluclast® 2.0 L type X. The yields of virus particles using this enzyme were comparable with those obtained using either of two laboratory-grade cellulases, Cellulase type 1 (Sigma) and Driselase®. However, the specific infectivity or aphid transmissibility of the particles purified using Celluclast® was 10-100 times greater than those of preparations obtained using laboratory-grade cellulases or no enzyme. The main advantage of using Celluclast® is that at present in Australia its cost is only ca. 1% of laboratory-grade cellulases.
Resumo:
Purpose: This study investigated the effect of chemical conjugation of the amino acid L-leucine to the polysaccharide chitosan on the dispersibility and drug release pattern of a polymeric nanoparticle (NP)-based controlled release dry powder inhaler (DPI) formulation. Methods: A chemical conjugate of L-leucine with chitosan was synthesized and characterized by Infrared (IR) Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Elemental Analysis and X-ray Photoelectron Spectroscopy (XPS). Nanoparticles of both chitosan and its conjugate were prepared by a water-in-oil emulsification – glutaraldehyde cross-linking method using the antihypertensive agent, diltiazem (Dz) hydrochloride as the model drug. The surface morphology and particle size distribution of the nanoparticles were determined by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The dispersibility of the nanoparticle formulation was analysed by a Twin Stage Impinger (TSI) with a Rotahaler as the DPI device. Deposition of the particles in the different stages was determined by gravimetry and the amount of drug released was analysed by UV spectrophotometry. The release profile of the drug was studied in phosphate buffered saline at 37 ⁰C and analyzed by UV spectrophotometry. Results: The TSI study revealed that the fine particle fractions (FPF), as determined gravimetrically, for empty and drug-loaded conjugate nanoparticles were significantly higher than for the corresponding chitosan nanoparticles (24±1.2% and 21±0.7% vs 19±1.2% and 15±1.5% respectively; n=3, p<0.05). The FPF of drug-loaded chitosan and conjugate nanoparticles, in terms of the amount of drug determined spectrophotometrically, had similar values (21±0.7% vs 16±1.6%). After an initial burst, both chitosan and conjugate nanoparticles showed controlled release that lasted about 8 to 10 days, but conjugate nanoparticles showed twice as much total drug release compared to chitosan nanoparticles (~50% vs ~25%). Conjugate nanoparticles also showed significantly higher dug loading and entrapment efficiency than chitosan nanoparticles (conjugate: 20±1% & 46±1%, chitosan: 16±1% & 38±1%, n=3, p<0.05). Conclusion: Although L-leucine conjugation to chitosan increased dispersibility of formulated nanoparticles, the FPF values are still far from optimum. The particles showed a high level of initial burst release (chitosan, 16% and conjugate, 31%) that also will need further optimization.