375 resultados para Gene secretor
Resumo:
1. The low density lipoprotein receptor is an important regulator of serum cholesterol which may have implications for the development of both hypertension and obesity. In this study, genotypes for a low density lipoprotein receptor gene (LDLR) dinucleotide polymorphism were determined in both lean and obese normotensive populations. 2. In previous cross-sectional association studies an ApaLI and a HincII polymorphism for LDLR were shown to be associated with obesity in essential hypertensives. However, these polymorphisms did not show an association with obesity in normotensives. 3. In contrast, this study reports that preliminary results for an LDLR microsatellite marker, located more towards the 3' end of the gene, show a significant association with obesity in the normotensive population studied. These results indicate that LDLR could play an important role in the development of obesity, which might be independent of hypertension.
Resumo:
Migraine shows strong familial aggregation. However, the number of genes involved in the disorder is unknown and not identified. Nitric oxide is involved in the central processing of pain stimuli and plays an important role in the regulation of basal or stimulated vasodilation. Nitric oxide synthase, which controls the synthesis of nitric oxide, could possibly be a cause, or candidate gene, in migraine etiology. In this study, we detected a polymorphism for endothelial nitric oxide synthase by polymerase chain reaction and tested this for association and linkage to migraine. Results from the study did not show an association of the nitric oxide synthase microsatellite when tested in 91 affected and 85 unaffected individuals. Using the FASTLINK program for parametric linkage analysis, the polymorphism did not show significant linkage to migraine when tested in four migraine pedigrees composed of 116 individuals, 52 affected. Total LOD scores excluded linkage up to 8.5 cM between the nitric oxide synthase polymorphism and migraine. Results using the nonparametric affected pedigree member form of analysis also did not support a role for this gene in migraine etiology.
Resumo:
The gene for renin, previously mapped to human chromosome 1, was further localized to 1q12 → qter using human-mouse somatic cell hybrid DNAs. The renin DNA probe used (λ HR5) could detect a HindIII restriction fragment length polymorphism. When used in studies of 12 informative families, no linkage could be found between the renin and Charcot-Marie-Tooth disease. Furthermore, an association of any renin allele with hypertension was not apparent.
Resumo:
Migraine is a common complex disorder, currently classified into two main subtypes, migraine with aura (MA) and migraine without aura (MO). The strong preponderance of females to males suggests an X-linked genetic component. Recent studies have identified an X chromosomal susceptibility region (Xq24-q28) in two typical migraine pedigrees. This region harbours a potential candidate gene for the disorder, the serotonin receptor 2C (5-HT2C) gene. This study involved a linkage and association approach to investigate two single nucleotide variants in the 5-HT2C gene. In addition, exonic coding regions of the 5-HT2C gene were also sequenced for mutations in X-linked migraine pedigrees. Results of this study did not detect any linkage or association, and no disease causing mutations were identified. Hence, results for this study do not support a significant role of the 5-HT 2C gene in migraine predisposition. © 2003 Wiley-Liss, Inc.
Resumo:
The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.
Resumo:
The genetic basis of primary hypertension is not known. Renin is important in blood pressure and volume control and a HindIII restriction fragment length polymorphism (RFLP) is present within the human renin gene locus. To examine whether there is a relationship between this RFLP and primary hypertension, DNA and renin analyses were performed on leukocytes and plasma from hypertensive and normotensive individuals. In hypertensives the frequencies of alleles for the HindIII RFLP were found to be 0.55 and 0.45, compared with 0.60 and 0.40 in the total population of 231 subjects examined, a difference that was not statistically significant. There also appeared to be no significant difference in renin activity in plasma for hypertensive patients of each genotype, nor in their pre- or post-treatment blood pressures. We thus conclude that, within the limits of the present study, the suspected genetic abnormalities associated with primary hypertension in man do not appear to be related to a HindIII RFLP in the renin gene.
Resumo:
BACKGROUND: Oestrogen receptor 1 ( ESR1) is located in region 6q25.1 and encodes a ligand-activated transcription factor composed of several domains important for hormone binding and transcription activation. Progesterone receptor ( PGR) is located in 11q22-23 and mediates the role of progesterone interacting with different transcriptional co-regulators. ESR1 and PGR have previously been implicated in migraine susceptibility. Here, we report the results of an association study of these genes in a migraine pedigree from the genetic isolate of Norfolk Island, a population descended from a small number of Isle of Man "Bounty Mutineer" and Tahitian founders.
Resumo:
1. Previous glucagon receptor gene (GCGR) studies have shown a Gly40Ser mutation to be more prevalent in essential hypertension and to affect glucagon binding affinity to its receptor. An Alu-repeat poly(A) polymorphism colocalized to GCGR was used in the present study to test for association and linkage in hypertension as well as association in obesity development. 2. Using a cross-sectional approach, 85 hypertensives and 95 normotensives were genotyped using polymerase chain reaction primers flanking the Alu-repeat. Both hypertensive and normotensive populations were subdivided into lean and obese categories based on body mass index (BMI) to determine involvement of this variant in obesity. For the linkage study, 89 Australian Caucasian hypertension affected sibships (174 sibpairs) were genotyped and the results were analysed using GENE-HUNTER, Mapmaker Sibs, ERPA and SPLINK (all freely available from http://linlkage.rockefeller. edu/soft/list.html). 3. Cross-sectional results for both hypertension and obesity were analysed using Chi-squared and Monte Carlo analyses. Results did not show an association of this variant with either hypertension (χ2 = 6.9, P = 0.14; Monte Carlo χ2 = 7.0, P = 0.11; n = 5000) or obesity (χ2 = 3.3, P = 0.35; Monte Carlo χ2 = 3.26, P = 0.34; n = 5000). In addition, results from the linkage study using hypertensive sib-pairs did not indicate linkage of the poly(A) repent with hypertension. Hence, results did not indicate a role far the Alu-repeat in either hypertension or obesity. However, as the heterozygosity of this poly(A) repeat is low (35%), a larger number of hypertensive sib-pairs may be required to draw definitive conclusions.
Resumo:
Insulin has cardiovascular actions and patients with essential hypertension display insulin resistance. A cross-sectional study of the R1 RFLP of the insulin receptor gene (INSR) was carried out in 67 hypertensive (HT) and 75 normotensive (NT) subjects whose parents had a similar blood pressure status at age ≥50. The frequency of the minor (+) allele was 0.31 in HTs and 0.44 in NTs, and the difference between observed alleles in all subjects in each group was significant (χ2 = 4.8, P<0.05). Allele frequencies of a BglI RFLP of the insulin gene, however, did not differ between the HT and NT groups. The data thus provide evidence in favour of an association of HT with a polymorphism at the INSR locus (19p 13.3-13.2), so implicating this locus, and possibly a genetic variant of the insulin receptor itself, in HT.
Resumo:
The present study examined polymorphisms of genes that might be involved in the onset of essential hypertension (HT). These included the (i) growth hormone gene (GH1), whose locus has recently been linked to elevated blood pressure (BP) in the stroke-prone SHR, although recent sib-pair analysis of a polymorphism near the human chorionic somatomammotropin gene (a member of the GH cluster) was unable to show linkage with HT; (ii) renal kallikrein gene (KLK1); and (iii) atrial natriuretic factor gene (ANF), where a primary defect in production or activity of kallikrein or ANF could cause NaCl retention and vasoconstriction. Association analyses were conducted to compare restriction fragment length polymorphisms (RFLPs) of each gene in 85 HT and 95 normotensive (NT) Caucasian subjects whose parents had a similar BP status at age ≥50 years. The frequency of the minor allele of (i) a RsaI RFLP in the promoter of GH1, amplified from leukocyte DNA by the polymerase chain reaction, was 0.15 in the HT group and 0.14 in the NT group (χ1=0.34, P=0.55); (ii) a TaqI RFLP for KLK1 was 0.035 in the HT group and 0.015 in the NT group (χ2=1.5, P=0.21); and (iii) a XhoI RFLP for ANF was 0.50 in HTs and 0.46 in NTs (χ2=0.20, P=0.65). Studies of HT pedigrees found one family in which the ANF locus and HT were not linked, owing to an obligate recombinant. The present data thus provide no evidence for involvement of the growth hormone, renal kallikrein, nor ANF gene in the causation of essential hypertension.
Resumo:
Obese (BMI ≥ 26 kg/m 2; n = 51) and lean (BMI <26 kg/m 2; n = 61) Caucasian patients with severe, familial essential hypertension, were compared with respect to genotype and allele frequencies of a HincII RFLP of the low density lipoprotein receptor gene (LDLR). A similar analysis was performed in obese (n = 28) and lean (n = 68) normotensives. A significant association of the C allele of the T→C variant responsible for this RFLP was seen with obesity (χ 2 = 4.6, P = 0.029) in the hypertensive, but not in the normotensive, group (odds ratio = 3.0 for the CC genotype and 2.7 for CT). Furthermore, BMI tracked with genotypes of this allele in the hypertensives (P = 0.046). No significant genotypic relationship was apparent for plasma lipids. Significant linkage disequilibrium was, moreover, noted between the HincII RFLP and an ApaLI RFLP (χ 2 = 33, P<0.0005) that has previously shown even stronger association with obesity (odds ratio 19.6 for cases homozygous for the susceptibility allele and 15.2 for het-erozygotes). The present study therefore adds to our previous evidence implicating LDLR as a locus for obesity in patients with essential hypertension.
Resumo:
Migraine is a debilitating neurological disorder characterized by recurrent attacks of severe headache. The disorder is highly prevalent, affecting approximately 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the type and number of genes involved is not yet clear. However, the calcium channel gene, CACNA1A, on chromosome 19 contains mutations responsible for familial hemiplegic migraine, a rare and severe subtype of migraine. There is also evidence to suggest that serotonin- and dopamine-related genes may be involved in the pathogenesis of migraine. This study employed a linkage and association approach to investigate neurotransmitter-related migraine candidate genes. Polymorphisms within the dopamine beta-hydroxylase (DBH) gene, serotonin transporter gene (SERT), and dopamine receptor gene (DRD2) were tested in 177 unrelated Caucasian migraineurs and 182 control individuals. In addition, an independent sample of 82 families affected with migraine was examined. Unrelated case-control association analysis of a DBH intragenic dinucleotide polymorphism indicated altered allelic distribution between migraine and control groups (L2=16.53, P=0.019). Furthermore, the transmission/disequilibrium test, which was implemented on the family data, also indicated distortion of allele transmission for the same DBH marker (L2=4.44, P=0.035). Together, these results provide evidence for allelic association of the DBH gene with typical migraine susceptibility (Fisher's combined P value=0.006) and indicate that further research into the role of the DBH gene in the etiology of migraine is warranted.
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.
Resumo:
The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.