171 resultados para Gastrointestinal transit
Resumo:
The aim of this paper is to examine the association between a range of objectively measured neighbourhood features and the likelihood of mid-aged adults walking for transport. Increased walking for transport would bring multiple benefits, including improved population and environmental health. As part of the baseline HABITAT study, 10,745 residents of Brisbane, Australia, aged 40–65 years, from 200 neighbourhoods were asked about the time they spent walking for transport. Walking data were collected by mail survey and the physical environmental features of neighbourhoods were compiled using a geographic information systems database. Walking for transport was categorised into four levels and the association between walking and each neighbourhood characteristic was examined using multilevel multinomial models. A number of threshold trends were evident; for example, off-road bikeways were consistently associated with walking between 60 and 150 min per week. Living within 500 m of public transit was also an important predictor but only for those who walked for less than 150 min per week. Interventions targeting these neighbourhood characteristics may lead to improved environmental quality, lower rates of overweight and obesity and associated chromic disease.
Resumo:
A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy". However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.
Resumo:
Bus travel time estimation and prediction are two important modelling approaches which could facilitate transit users in using and transit providers in managing the public transport network. Bus travel time estimation could assist transit operators in understanding and improving the reliability of their systems and attracting more public transport users. On the other hand, bus travel time prediction is an important component of a traveller information system which could reduce the anxiety and stress for the travellers. This paper provides an insight into the characteristic of bus in traffic and the factors that influence bus travel time. A critical overview of the state-of-the-art in bus travel time estimation and prediction is provided and the needs for research in this important area are highlighted. The possibility of using Vehicle Identification Data (VID) for studying the relationship between bus and cars travel time is also explored.
Resumo:
Vision-based SLAM is mostly a solved problem providing clear, sharp images can be obtained. However, in outdoor environments a number of factors such as rough terrain, high speeds and hardware limitations can result in these conditions not being met. High speed transit on rough terrain can lead to image blur and under/over exposure, problems that cannot easily be dealt with using low cost hardware. Furthermore, recently there has been a growth in interest in lifelong autonomy for robots, which brings with it the challenge in outdoor environments of dealing with a moving sun and lack of constant artificial lighting. In this paper, we present a lightweight approach to visual localization and visual odometry that addresses the challenges posed by perceptual change and low cost cameras. The approach combines low resolution imagery with the SLAM algorithm, RatSLAM. We test the system using a cheap consumer camera mounted on a small vehicle in a mixed urban and vegetated environment, at times ranging from dawn to dusk and in conditions ranging from sunny weather to rain. We first show that the system is able to provide reliable mapping and recall over the course of the day and incrementally incorporate new visual scenes from different times into an existing map. We then restrict the system to only learning visual scenes at one time of day, and show that the system is still able to localize and map at other times of day. The results demonstrate the viability of the approach in situations where image quality is poor and environmental or hardware factors preclude the use of visual features.
Resumo:
While substantial research on intelligent transportation systems has focused on the development of novel wireless communication technologies and protocols, relatively little work has sought to fully exploit proximity-based wireless technologies that passengers actually carry with them today. This paper presents the real-world deployment of a system that exploits public transit bus passengers’ Bluetooth-capable devices to capture and reconstruct micro- and macro-passenger behavior. We present supporting evidence that approximately 12% of passengers already carry Bluetooth-enabled devices and that the data collected on these passengers captures with almost 80 % accuracy the daily fluctuation of actual passengers flows. The paper makes three contributions in terms of understanding passenger behavior: We verify that the length of passenger trips is exponentially bounded, the frequency of passenger trips follows a power law distribution, and the microstructure of the network of passenger movements is polycentric.
Resumo:
The 2011 floods in Southeast Queensland had a devastating impact on many sectors including transport. Road and rail systems across all flooded areas of Queensland were severely affected and significant economic losses occurred as a result of roadway and railway closures. Travellers were compelled to take alternative routes because of road closures or deteriorated traffic conditions on their regular route. Extreme changes in traffic volume can occur under such scenarios which disrupts the network re-equilibrium and re-stabilisation in the recovery phase as travellers continuously adjust their travel options. This study explores how travellers respond to such a major network disruption. A comprehensive study was undertaken focusing on how bus riders reacted to the floods in Southeast Queensland by comparing the ridership patterns before, during and after the floods. The study outcomes revealed the evolving reactions of transit users to direct and indirect impacts of a natural disaster. A good understanding of this process is crucial for developing appropriate strategies to encourage modal shift of automobile users to public transit and also for modelling of travel behaviours during and after a major network disruption caused by natural disasters.