222 resultados para Gas masks
Resumo:
Concern about the risk of harmful human-induced climate change has resulted in international efforts to reduce greenhouse gas emissions to the atmosphere. We review the international and national context for consideration of greenhouse abatement in native vegetation management and discuss potential options in Queensland. Queensland has large areas of productive or potentially productive land with native woody vegetation cover with approximately 76 million ha with woody cover remaining in 1991. High rates of tree clearing, predominantly to increase pasture productivity, continued throughout the 1990s with an average 345,000 ha/a estimated to have been cleared, including non-remnant (woody regrowth) as well as remnant vegetation. Estimates of greenhouse gas emissions associated with land clearing currently have a high uncertainty but clearing was reported to contribute a significant proportion of Australia's total greenhouse gas emissions from 1990 (21%) to 1999 (13%). In Queensland, greenhouse emissions from land clearing were estimated to have been 54.5 Mt CO(2)-e in 1999. Management of native vegetation for timber harvesting and the proliferation of woody vegetation (vegetation thickening) in the grazed woodlands also represent large carbon fluxes. Forestry (plantations and native forests) in Queensland was reported to be a 4.4 Mt CO(2)-e sink in 1999 but there are a lack of comprehensive data on timber harvesting in private hardwood forests. Vegetation thickening is reported for large areas of the c. 60 million ha grazed woodlands in Queensland. The magnitude of the carbon sink in 27 million ha grazed eucalypt woodlands has been estimated to be 66 Mt CO(2)-e/a but this sink is not currently included in Australia's inventory of anthropogenic greenhouse emissions. Improved understanding of the function and dynamics of natural and managed ecosystems is required to support management of native vegetation to preserve and enhance carbon stocks for greenhouse benefits while meeting objectives of sustainable and productive management and biodiversity protection.
Resumo:
This study elucidated the shadow price of greenhouse gas (GHG) emissions for 1,024 international companies worldwide that were surveyed from 15 industries in 37 major countries. Our results indicate that the shadow price of GHG at the firm level is much higher than indicated in previous studies. The higher shadow price was found in this study as a result of the use of Scope 3 GHG emissions data. The results of this research indicate that a firm would carry a high cost of GHG emissions if Scope 3 GHG emissions were the focus of the discussion of corporate social responsibility. In addition, such shadow prices were determined to differ substantially among countries, among sectors, and within sectors. Although a number of studies have calculated the shadow price of GHG emissions, these studies have employed country-level or industry-level data or a small sample of firm-level data in one country. This new data from a worldwide firm analysis of the shadow price of GHG emissions can play an important role in developing climate policy and promoting sustainable development.
Resumo:
The Japanese government initiated a series of regulatory reforms in the mid-1990s. The Japanese urban gas industry consists of various sized private and non-private firms. Numerous previous studies find that deregulation leads to productivity improvements. We extend the literature by analyzing deregulation, privatization, and other aspects of a regulated industry using unique firm level data. This study measures productivity to evaluate the effect of the deregulation reform. Using data from 205 firms from 1993 to 2004, we find that the deregulation effect differs depending on firm size. Competitive pressure contributes to advanced productivity. The deregulation of gas sales to commercial customers is the most important factor for advancing productivity. Copyright © 2013 by the IAEE. All rights reserved.
Resumo:
The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.
Resumo:
The international shipping sector is a major contributor to global greenhouse gas (GHG) emissions. The International Maritime Organisation (IMO) has adopted some technical and operational measures to reduce GHG emissions from international shipping. However, these measures may not be enough to reduce the amount of GHG emissions from international shipping to an acceptable level. Therefore, the IMO Member States are currently considering a number of proposals for the introduction of market-based measures (MBMs). During the negotiation process, some leading developing countries raised questions about the probable confl ict of the proposed MBMs with the rules of the World Trade Organisation (WTO). This article comprehensively examines this issue and argues that none of the MBM proposals currently under consideration by the IMO has any confl ict with the WTO rules.
Resumo:
Synthesis of metal borides is typically undertaken at high temperature using direct combinations of elemental starting materials[1]. Techniques include carbothermal reduction using elemental carbon, metals, metal oxides and B2O3[2] or reaction between metal chlorides and boron sources[3]. These reactions generally require temperatures greater than 1200oC and are not readily suitable for an industrial setting nor scalable to bulk production.
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.
Resumo:
As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC
Resumo:
Few would disagree that the upstream oil & gas industry has become more technology-intensive over the years. But how does innovation happen in the industry? Specifically, what ideas and inputs flow from which parts of the sector׳s value network, and where do these inputs go? And how do firms and organizations from different countries contribute differently to this process? This paper puts forward the results of a survey designed to shed light on these questions. Carried out in collaboration with the Society of Petroleum Engineers (SPE), the survey was sent to 469 executives and senior managers who played a significant role with regard to R&D and/or technology deployment in their respective business units. A total of 199 responses were received from a broad range of organizations and countries around the world. Several interesting themes and trends emerge from the results, including: (1) service companies tend to file considerably more patents per innovation than other types of organization; (2) over 63% of the deployed innovations reported in the survey originated in service companies; (3) neither universities nor government-led research organizations were considered to be valuable sources of new information and knowledge in the industry׳s R&D initiatives, and; (4) despite the increasing degree of globalization in the marketplace, the USA still plays an extremely dominant role in the industry׳s overall R&D and technology deployment activities. By providing a detailed and objective snapshot of how innovation happens in the upstream oil & gas sector, this paper provides a valuable foundation for future investigations and discussions aimed at improving how R&D and technology deployment are managed within the industry. The methodology did result in a coverage bias within the survey, however, and the limitations arising from this are explored.
Resumo:
The upstream oil & gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data”—that is, the ability to apply more sophisticated types of analytical tools to information in a way that extracts new insights or creates new forms of value—is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil & gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This paper examines existing data management practices in the upstream oil & gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the Big Data revolution. The comparison shows that, in companies that are leading the Big Data revolution, data is regarded as a valuable asset. The presented evidence also shows, however, that this is usually not true within the oil & gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how upstream oil & gas companies could potentially extract more value from data, and concludes with a series of specific technical and management-related recommendations to this end.