251 resultados para Flow Chamber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical investigation is carried out for natural convection heat transfer in an isosceles triangular enclosure partitioned in the centre by a vertical wall with infinite conductivity. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. As a result, heat is transferred between both sides of the enclosure through the conducting vertical wall with natural convection boundary layers forming adjacent to the middle partition and two inclined surfaces. The Finite Volume based software, Ansys 14.5 (Fluent) is used for the numerical simulations. The numerical results are obtained for different values of aspect ratio, A (0.2, 0.5 and 1.0) and Rayleigh number, Ra (10^5 <= Ra <= 10^8) for a fixed Prandtl number, Pr = 0.72 of air. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes several distinct stages including an initial stage, a transitional stage and a steady stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract An experimental dataset representing a typical flow field in a stormwater gross pollutant trap (GPT) was visualised. A technique was developed to apply the image-based flow visualisation (IBFV) algorithm to the raw dataset. Particle image velocimetry (PIV) software was previously used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding stormwater pollutant capture and retention behaviour within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate the possible flow paths of pollutants entering the GPT. The investigated flow paths were compared with the behaviour of pollutants monitored during experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Right heart dysfunction is one of the most serious complications following implantation of a left ventricular assist device (LVAD), often leading to the requirement for short or long term right ventricular support (RVAD). The inflow cannulation site induces major haemodynamic changes and so there is a need to optimize the site used depending on the patient's condition. Therefore, this study evaluated and compared the haemodynamic influence of right atrial (RAC) and right ventricular (RVC) inflow cannulation sites. An in-vitro, variable heart failure, mock circulation loop was used to compare RAC and RVC in mild and severe biventricular heart failure (BHF) conditions. In the severe BHF condition, higher ventricular ejection fraction (RAC: 13.6%, RVC: 32.7%) and thus improved heart chamber and RVAD washout was observed with RVC, which suggested this strategy might be preferable for long term support (ie. bridge to transplant or destination therapy) to reduce the risk of thrombus formation. In the mild BHF condition, higher pulmonary valve flow (RAC: 3.33 L/min, RVC: 1.97 L/min) and lower right ventricular stroke work (RAC: 0.10 W, RVC: 0.13 W) and volumes were recorded with RAC. These results indicate an improved potential for myocardial recovery, thus RAC should be chosen in this condition. This in-vitro study suggests that RVAD inflow cannulation site should be chosen on a patient-specific basis with a view to the support strategy to promote myocardial recovery or reduce the risk of long-term complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of increased competition between healthcare providers, higher customer expectations, stringent checks on insurance payments and new government regulations, it has become vital for healthcare organisations to enhance the quality of the care they provide, to increase efficiency, and to improve the cost effectiveness of their services. Consequently, a number of quality management concepts and tools are employed in the healthcare domain to achieve the most efficient ways of using time, manpower, space and other resources. Emergency departments are designed to provide a high-quality medical service with immediate availability of resources to those in need of emergency care. The challenge of maintaining a smooth flow of patients in emergency departments is a global problem. This study attempts to improve the patient flow in emergency departments by considering Lean techniques and Six Sigma methodology in a comprehensive conceptual framework. The proposed research will develop a systematic approach through integration of Lean techniques with Six Sigma methodology to improve patient flow in emergency departments. The results reported in this paper are based on a standard questionnaire survey of 350 patients in the Emergency Department of Aseer Central Hospital in Saudi Arabia. The results of the study led us to determine the most significant variables affecting patient satisfaction with patient flow, including waiting time during patient treatment in the emergency department; effectiveness of the system when dealing with the patient’s complaints; and the layout of the emergency department. The proposed model will be developed within a performance evaluation metric based on these critical variables, to be evaluated in future work within fuzzy logic for continuous quality improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length have a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the study of foreign news flows has received considerable attention from communication scholars for quite some time, it has typically focused on political or ‘hard’ news, at the expense of other types of journalistic content. This article argues that, as the foreign news hole is shrinking, travel journalism is becoming an increasingly important source of information about foreign countries in the news media. It reports the results of a comparative study of newspaper travel sections in Australia, Canada, New Zealand, and the UK, and argues that travel journalism often replicates the imbalances found in foreign news flows. Well-known factors – such as regionalism, powerful nations, cultural proximity, the role played by big neighbours and the diversity of coverage – are also powerful determinants in travel journalism. At the same time, a country’s tourist behaviour also plays a role but is often overshadowed by other factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a novel optimum path planning strategy for long duration AUV operations in environments with time-varying ocean currents. These currents can exceed the maximum achievable speed of the AUV, as well as temporally expose obstacles. In contrast to most other path planning strategies, paths have to be defined in time as well as space. The solution described here exploits ocean currents to achieve mission goals with minimal energy expenditure, or a tradeoff between mission time and required energy. The proposed algorithm uses a parallel swarm search as a means to reduce the susceptibility to large local minima on the complex cost surface. The performance of the optimisation algorithms is evaluated in simulation and experimentally with the Starbug AUV using a validated ocean model of Brisbane’s Moreton Bay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on an investigation of the flow/chemistry coupling inside a nominally two-dimensional inlet-fuelled scramjet configuration. The experiments were conducted at a freestream Mach number of 7.3 and a total flow enthalpy of 4.3MJ/kg corresponding to a Mach 9.7 flight condition. The phenomenon of radical-farming has been studied in detail using two-dimensional OH* chemiluminescence imaging and emission spectroscopy. High signal levels of excited OH (OH*) were detected behind the first shock reflections inside the combustion chamber upstream of any measurable pressure rise from combustion, which occurred towards the rear of the combustor. The production of OH in the first hot pocket initiates the ignition process and then accelerates the combustion process in the next downstream hot pocket. This was confirmed by numerical simulations of premixed hydrogen/air flow through the scramjet. Chemical kinetics analyses reveal that the ignition process is governed by the interaction between various reaction groups leading to a chainbranching explosion for low mean temperature and pressure combustion flowfields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsaturated water flow in soil is commonly modelled using Richards’ equation, which requires the hydraulic properties of the soil (e.g., porosity, hydraulic conductivity, etc.) to be characterised. Naturally occurring soils, however, are heterogeneous in nature, that is, they are composed of a number of interwoven homogeneous soils each with their own set of hydraulic properties. When the length scale of these soil heterogeneities is small, numerical solution of Richards’ equation is computationally impractical due to the immense effort and refinement required to mesh the actual heterogeneous geometry. A classic way forward is to use a macroscopic model, where the heterogeneous medium is replaced with a fictitious homogeneous medium, which attempts to give the average flow behaviour at the macroscopic scale (i.e., at a scale much larger than the scale of the heterogeneities). Using the homogenisation theory, a macroscopic equation can be derived that takes the form of Richards’ equation with effective parameters. A disadvantage of the macroscopic approach, however, is that it fails in cases when the assumption of local equilibrium does not hold. This limitation has seen the introduction of two-scale models that include at each point in the macroscopic domain an additional flow equation at the scale of the heterogeneities (microscopic scale). This report outlines a well-known two-scale model and contributes to the literature a number of important advances in its numerical implementation. These include the use of an unstructured control volume finite element method and image-based meshing techniques, that allow for irregular micro-scale geometries to be treated, and the use of an exponential time integration scheme that permits both scales to be resolved simultaneously in a completely coupled manner. Numerical comparisons against a classical macroscopic model confirm that only the two-scale model correctly captures the important features of the flow for a range of parameter values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Siphons have been used since ancient times, but exactly how they work is still a matter of debate. In order to elucidate the modus operandi of a siphon, a 1.5 m high siphon was set up in a hypobaric chamber to explore siphon behaviour in a low-pressure environment. When the pressure in the chamber was reduced to about 0.18 atmospheres, a curious waterfall-like feature appeared downstream from the apex of the siphon. A hypothesis is presented to explain the waterfall phenomenon. When the pressure was reduced further the siphon broke into two columns - in effect becoming two back-to-back barometers. This experiment demonstrates the role of atmospheric pressure in explaining the hydrostatic characteristics of a siphon and the role of molecular cohesion in explaining the hydrodynamic aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-translating, long duration thunderstorm downburst has been simulated experimentally and numerically by modelling a spatially stationary steady flow impinging air jet. Velocity profiles were shown to compare well with an upper-bound of velocity measurements reported for full-scale microbursts. Velocity speed-up over a range of topographic features in simulated downburst flow was also tested with comparisons made to previous work in a similar flow, and also boundary layer wind tunnel experiments. It was found that the amplification measured above the crest of topographic features in simulated downburst flow was up to 35% less than that observed in boundary layer flow for all shapes tested. From the computational standpoint we conclude that the Shear Stress Transport (SST) model performs the best from amongst a range of eddy-viscosity and second moment closures tested for modelling the impinging jet flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulsed wall jet has been used to simulate the gust front of a thunderstorm downburst. Flow visualization, wind speed and surface pressure measurements were obtained. The characteristics of the hypothesized ring vortex of a full-scale downburst were reproduced at a scale estimated to be 1:3000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.