488 resultados para File processing (Computer science)
Resumo:
The feasibility of real-time calculation of parameters for an internal combustion engine via reconfigurable hardware implementation is investigated as an alternative to software computation. A detailed in-hardware field programmable gate array (FPGA)-based design is developed and evaluated using input crank angle and in-cylinder pressure data from fully instrumented diesel engines in the QUT Biofuel Engine Research Facility (BERF). Results indicate the feasibility of employing a hardware-based implementation for real-time processing for speeds comparable to the data sampling rate currently used in the facility, with acceptably low level of discrepancies between hardware and software-based calculation of key engine parameters.
Resumo:
Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.
Resumo:
This chapter presents a comparative survey of recent key management (key distribution, discovery, establishment and update) solutions for wireless sensor networks. We consider both distributed and hierarchical sensor network architectures where unicast, multicast and broadcast types of communication take place. Probabilistic, deterministic and hybrid key management solutions are presented, and we determine a set of metrics to quantify their security properties and resource usage such as processing, storage and communication overheads. We provide a taxonomy of solutions, and identify trade-offs in these schemes to conclude that there is no one-size-fits-all solution.
Resumo:
Speaker diarization determines instances of the same speaker within a recording. Extending this task to a collection of recordings for linking together segments spoken by a unique speaker requires speaker linking. In this paper we propose a speaker linking system using linkage clustering and state-of-the-art speaker recognition techniques. We evaluate our approach against two baseline linking systems using agglomerative cluster merging (AC) and agglomerative clustering with model retraining (ACR). We demonstrate that our linking method, using complete-linkage clustering, provides a relative improvement of 20% and 29% in attribution error rate (AER), over the AC and ACR systems, respectively.
Resumo:
Sfinks is a shift register based stream cipher designed for hardware implementation and submitted to the eSTREAM project. In this paper, we analyse the initialisation process of Sfinks. We demonstrate a slid property of the loaded state of the Sfinks cipher, where multiple key-IV pairs may produce phase shifted keystream sequences. The state update functions of both the initialisation process and keystream generation and also the pattern of the padding affect generation of the slid pairs.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Data reliability issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. Participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data reliability has become an urgent demand. This study aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we propose to design a reputation framework to enhance data reliability and also investigate some critical elements that should be aware of during developing and designing new reputation systems.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork
Resumo:
Our everyday environment is full of text but this rich source of information remains largely inaccessible to mobile robots. In this paper we describe an active text spotting system that uses a small number of wide angle views to locate putative text in the environment and then foveates and zooms onto that text in order to improve the reliability of text recognition. We present extensive experimental results obtained with a pan/tilt/zoom camera and a ROS-based mobile robot operating in an indoor environment.
Resumo:
This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.
Resumo:
In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.
Resumo:
In this paper we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one pre-processes the source image and template/model with a bank of filters (e.g. oriented edges, Gabor, etc.) as: (i) it can handle substantial illumination variations, (ii) the inefficient pre-processing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, (iii) unlike traditional LK the computational cost is invariant to the number of filters and as a result far more efficient, and (iv) this approach can be extended to the inverse compositional form of the LK algorithm where nearly all steps (including Fourier transform and filter bank pre-processing) can be pre-computed leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to non-rigid object alignment tasks that are considered extensions of the LK algorithm such as those found in Active Appearance Models (AAMs).
Resumo:
Real-world AI systems have been recently deployed which can automatically analyze the plan and tactics of tennis players. As the game-state is updated regularly at short intervals (i.e. point-level), a library of successful and unsuccessful plans of a player can be learnt over time. Given the relative strengths and weaknesses of a player’s plans, a set of proven plans or tactics from the library that characterize a player can be identified. For low-scoring, continuous team sports like soccer, such analysis for multi-agent teams does not exist as the game is not segmented into “discretized” plays (i.e. plans), making it difficult to obtain a library that characterizes a team’s behavior. Additionally, as player tracking data is costly and difficult to obtain, we only have partial team tracings in the form of ball actions which makes this problem even more difficult. In this paper, we propose a method to overcome these issues by representing team behavior via play-segments, which are spatio-temporal descriptions of ball movement over fixed windows of time. Using these representations we can characterize team behavior from entropy maps, which give a measure of predictability of team behaviors across the field. We show the efficacy and applicability of our method on the 2010-2011 English Premier League soccer data.
Resumo:
We blend research from human-computer interface (HCI) design with computational based crypto- graphic provable security. We explore the notion of practice-oriented provable security (POPS), moving the focus to a higher level of abstraction (POPS+) for use in providing provable security for security ceremonies involving humans. In doing so we high- light some challenges and paradigm shifts required to achieve meaningful provable security for a protocol which includes a human. We move the focus of security ceremonies from being protocols in their context of use, to the protocols being cryptographic building blocks in a higher level protocol (the security cere- mony), which POPS can be applied to. In order to illustrate the need for our approach, we analyse both a protocol proven secure in theory, and a similar proto- col implemented by a �nancial institution, from both HCI and cryptographic perspectives.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways from payment systems to assisting the lives of elderly or disabled people. Security threats for these devices become increasingly dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level. Therefore, third-party developers have the opportunity to develop kernel-based low-level security tools which is not normal for smartphone platforms. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS for example, holding the greatest market share among all smartphone OSs, was closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners� privacy. In this work, we present our current results in analyzing the security of Android smartphones with a focus on its Linux side. Our results are not limited to Android, they are also applicable to Linux-based smartphones such as OpenMoko Neo FreeRunner. Our contribution in this work is three-fold. First, we analyze android framework and the Linux-kernel to check security functionalities. We survey wellaccepted security mechanisms and tools which can increase device security. We provide descriptions on how to adopt these security tools on Android kernel, and provide their overhead analysis in terms of resource usage. As open smartphones are released and may increase their market share similar to Symbian, they may attract attention of malware writers. Therefore, our second contribution focuses on malware detection techniques at the kernel level. We test applicability of existing signature and intrusion detection methods in Android environment. We focus on monitoring events on the kernel; that is, identifying critical kernel, log file, file system and network activity events, and devising efficient mechanisms to monitor them in a resource limited environment. Our third contribution involves initial results of our malware detection mechanism basing on static function call analysis. We identified approximately 105 Executable and Linking Format (ELF) executables installed to the Linux side of Android. We perform a statistical analysis on the function calls used by these applications. The results of the analysis can be compared to newly installed applications for detecting significant differences. Additionally, certain function calls indicate malicious activity. Therefore, we present a simple decision tree for deciding the suspiciousness of the corresponding application. Our results present a first step towards detecting malicious applications on Android-based devices.