276 resultados para Fatigue (Physiological condition).
Resumo:
Aims and objectives This study sought to determine the relationship between health related quality of life (HRQoL), fatigue and activity levels of people with anaemia secondary to chronic kidney disease (CKD) over a 12 month period following the introduction of an erythropoietin stimulating agent (ESA). Background CKD occurs in five stages and it is a complex chronic illness which severely impacts on an individual’s HRQoL, and ability to perform everyday activities. Fatigue is also a common symptom experienced by people with CKD. Design and methods Using a longitudinal repeated measures design, 28 people with CKD completed the SF-36, human activity profile and fatigue severity scale at the commencement of an ESA and then at 3, 6 and 12 months. Results Over a 12 month period, people reported a significant change in HRQoL in relation to role physical, vitality, mental health/emotional well-being and overall mental health. However activity levels did not significantly improve during that time. Both the amount of breathlessness and level of fatigue were highest at baseline and declined over time. Both fatigue and breathlessness were correlated with less reported general health over time. Conclusion Renal nurses, in dialysis units and CKD outpatient clinics, have repeated and frequent contact with people with CKD over long periods of time, and are in an ideal position to routinely assess fatigue and activity levels and to institute timely interventions. Early detection would enable timely nursing interventions to optimise HRQoL and independent activity. Relevance to Clinical Practice Drawing on rehabilitation nursing interventions could assist renal nurses to minimize the burden of fatigue and its impact on simple everyday activities and a person’s quality of life. These interventions are important for people who are living at home and could assist in lowering the burden on home support services.
Resumo:
Fatigue/sleepiness is recognised as an important contributory factor in fatal and serious injury road traffic incidents (RTIs), however, identifying fatigue/sleepiness as a causal factor remains an uncertain science. Within Australia attending police officers at a RTI report the causal factors; one option is fatigue/sleepiness. In some Australian jurisdictions police incident databases are subject to post hoc analysis using a proxy definition for fatigue/sleepiness. This secondary analysis identifies further RTIs caused by fatigue/sleepiness not initially identified by attending officers. The current study investigates the efficacy of such proxy definitions for attributing fatigue/sleepiness as a RTI causal factor. Over 1600 Australian drivers were surveyed regarding their experience and involvement in fatigue/sleep-related RTIs and near-misses during the past five years. Driving while fatigued/sleepy had been experienced by the majority of participants (66.0% of participants). Fatigue/sleep-related near misses were reported by 19.1% of participants, with 2.4% being involved in a fatigue/sleep-related RTI. Examination of the characteristics for the most recent event (either a near miss or crash) found that the largest proportion of incidents (28.0%) occurred when commuting to or from work, followed by social activities (25.1%), holiday travel (19.8%), or for work purposes (10.1%). The fatigue/sleep related RTI and near-miss experience of a representative sample of Australian drivers does not reflect the proxy definitions used for fatigue/sleepiness identification. In particular those RTIs that occur in urban areas and at slow speeds may not be identified. While important to have a strategy for identifying fatigue/sleepiness related RTIs proxy measures appear best suited to identifying specific subsets of such RTIs.
Resumo:
We determined the effect of muscle glycogen concentration and postexercise nutrition on anabolic signaling and rates of myofibrillar protein synthesis after resistance exercise (REX). Sixteen young, healthy men matched for age, body mass, peak oxygen uptake (VO2peak) and strength (one repetition maximum; 1RM) were randomly assigned to either a nutrient or placebo group. After 48 h diet and exercise control, subjects undertook a glycogen-depletion protocol consisting of one-leg cycling to fatigue (LOW), whereas the other leg rested (NORM). The next morning following an overnight fast, a primed, constant infusion of L-[ring-13C6] phenylalanine was commenced and subjects completed 8 sets of 5 unilateral leg press repetitions at 80% 1RM. Immediately after REX and 2 h later, subjects consumed a 500 ml bolus of a protein/CHO (20 g whey + 40 g maltodextrin) or placebo beverage. Muscle biopsies from the vastus lateralis of both legs were taken at rest and 1 and 4 h after REX. Muscle glycogen concentration was higher in the NORM than LOW at all time points in both nutrient and placebo groups (P < 0.05). Postexercise Akt-p70S6K-rpS6 phosphorylation increased in both groups with no differences between legs (P < 0.05). mTORSer2448 phosphorylation in placebo increased 1 h after exercise in NORM (P < 0.05), whereas mTOR increased ?4-fold in LOW (P < 0.01) and ?11 fold in NORM with nutrient (P < 0.01; different between legs P < 0.05). Post-exercise rates of MPS were not different between NORM and LOW in nutrient (0.070 ± 0.022 vs. 0.068 ± 0.018 %/h) or placebo (0.045 ± 0.021 vs. 0.049 ± 0.017 %/h). We conclude that commencing high-intensity REX with low muscle glycogen availability does not compromise the anabolic signal and subsequent rates of MPS, at least during the early (4 h) postexercise recovery period.
Resumo:
We determined the effect of coingestion of caffeine (Caff) with carbohydrate (CHO) on rates of muscle glycogen resynthesis during recovery from exhaustive exercise in seven trained subjects who completed two experimental trials in a randomized, double-blind crossover design. The evening before an experiment subjects performed intermittent exhaustive cycling and then consumed a low-CHO meal. The next morning subjects rode until volitional fatigue. On completion of this ride subjects consumed either CHO [4 g/kg body mass (BM)] or the same amount of CHO + Caff (8 mg/kg BM) during 4 h of passive recovery. Muscle biopsies and blood samples were taken at regular intervals throughout recovery. Muscle glycogen levels were similar at exhaustion [?75 mmol/kg dry wt (dw)] and increased by a similar amount (?80%) after 1 h of recovery (133 ± 37.8 vs. 149 ± 48 mmol/kg dw for CHO and Caff, respectively). After 4 h of recovery Caff resulted in higher glycogen accumulation (313 ± 69 vs. 234 ± 50 mmol/kg dw, P < 0.001). Accordingly, the overall rate of resynthesis for the 4-h recovery period was 66% higher in Caff compared with CHO (57.7 ± 18.5 vs. 38.0 ± 7.7 mmol·kg dw-1·h-1, P < 0.05). After 1 h of recovery plasma Caff levels had increased to 31 ± 11 ?M (P < 0.001) and at the end of the recovery reached 77 ± 11 ?M (P < 0.001) with Caff. Phosphorylation of CaMKThr286 was similar after exercise and after 1 h of recovery, but after 4 h CaMKThr286 phosphorylation was higher in Caff than CHO (P < 0.05). Phosphorylation of AMP-activated protein kinase (AMPK)Thr172 and AktSer473 was similar for both treatments at all time points. We provide the first evidence that in trained subjects coingestion of large amounts of Caff (8 mg/kg BM) with CHO has an additive effect on rates of postexercise muscle glycogen accumulation compared with consumption of CHO alone.
Resumo:
The purpose of this study was to compare the effectiveness of three different recovery modalities - active (ACT), passive (PAS) and contrast temperature water immersion (CTW) - on the performance of repeated treadmill running, lactate concentration and pH. Fourteen males performed two pairs of treadmill runs to exhaustion at 120% and 90% of peak running speed (PRS) over a 4-hour period. ACT, PAS or CTW was performed for 15-min after the first pair of treadmill runs. ACT consisted of running at 40% PRS, PAS consisted of standing stationary and CTW consisted of alternating between 60-s cold (10°C) and 120-s hot (42°C) water immersion. Run times were converted to time to cover set distance using critical power. Type of recovery modality did not have a significant effect on change in time to cover 400 m (Mean±SD; ACT 2.7±3.6 s, PAS 2.9±4.2 s, CTW 4.2±6.9 s), 1000 m (ACT 2.2±4.0 s, PAS 4.8±8.6 s, CTW 2.1±7.2 s) or 5000 m (ACT 1.4±29.0 s, PAS 16.7±58.5 s, CTW 11.7±33.0 s). Post exercise blood lactate concentration was lower in ACT and CTW compared with PAS. Participants reported an increased perception of recovery in the CTW compared with ACT and PAS. Blood pH was not significantly influenced by recovery modality. Data suggest both ACT and CTW reduce lactate accumulation after high intensity running, but high intensity treadmill running performance is returned to baseline 4-hours after the initial exercise bout regardless of the recovery strategy employed.
Resumo:
Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .
Resumo:
This paper describes the development of an analytical model used to simulate the fatigue behaviour of roof cladding during the passage of a tropical cyclone. The model incorporated into a computer program uses wind pressure data from wind tunnel tests in combination with time history information on wind speed and direction during a tropical cyclone, and experimental fatigue characteristics data of roof claddings. The wind pressure data is analysed using a rainflow form of analysis, and a fatigue damage index calculated using a modified form of Miner's rule. Some of the results obtained to date and their significance in relation to the review of current fatigue tests are presented. The model appears to be reasonable for comparative estimation of fatigue life, but an improvement of Miner's rule is required for the prediction of actual fatigue life.
Resumo:
Currently two different fatigue tests are being used to investigate the fatigue susceptibility of roof claddings in the cyclone prone areas of Australia. In order to resolve this issue a detailed investigation was conducted to study the nature of cyclonic wind forces using wind tunnel testing and computer modelling and the fatigue behaviour of metal roof claddings using structural testing. This led to the development of an accurate, but complicated loading matrix for a design cyclone. Based on this matrix, a simplified low-high-low loading sequence has been developed for the testing of roofing systems in cyclone prone areas. This paper first reviews the currently used fatigue loading sequences, then presents details of the cyclonic wind loading matrix and finally the development of the new simplified loading sequence. This simplified sequence should become the only suitable test for most of the cyclone prone areas of Australia covered by Region C which suffers from Category 4 cyclones. For Region D which suffers from Category 5 cyclones, the same loading sequence with 20% increased cycles has been recommended. An experimental programme to validate the new simplified loading sequence has been proposed.
Resumo:
The study aimed to examine shiftworkers fatigue and the longitudinal relationships that impact on fatigue such as team climate, work life conflict, control of shifts and shift type in shift working nurses. We used a quantitative survey methodology and analysed data with a moderated hierarchical multiple regression. After matching across two time periods 18 months apart, the sample consisted of 166 nurses from one Australian hospital. Of these nurses, 61 worked two rotating day shifts (morning & afternoon/evening) and 105 were rotating shiftworkers who worked three shifts (morning afternoon/evening and nights). The findings suggest that control over shift scheduling can have significant effects on fatigue for both two-shift and three-shift workers. A significant negative relationship between positive team climate and fatigue was moderated by shift type. At both Time 1 and Time 2, work life conflict was the strongest predictor of concurrent fatigue, but over time it was not.
Resumo:
Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.
Resumo:
Conditions of bridges deteriorate with age, due to different critical factors including, changes in loading, fatigue, environmental effects and natural events. In order to rate a network of bridges, based on their structural condition, the condition of the components of a bridge and their effects on behaviour of the bridge should be reliably estimated. In this paper, a new method for quantifying the criticality and vulnerability of the components of the railway bridges in a network will be introduced. The type of structural analyses for identifying the criticality of the components for carrying train loads will be determined. In addition to that, the analytical methods for identifying the vulnerability of the components to natural events whose probability of occurrence is important, such as, flood, wind, earthquake and collision will be determined. In order to maintain the practicality of this method to be applied to a network of thousands of railway bridges, the simplicity of structural analysis has been taken into account. Demand by capacity ratios of the components at both safety and serviceability condition states as well as weighting factors used in current bridge management systems (BMS) are taken into consideration. It will be explained what types of information related to the structural condition of a bridge is required to be obtained, recorded and analysed. The authors of this paper will use this method in a new rating system introduced previously. Enhancing accuracy and reliability of evaluating and predicting the vulnerability of railway bridges to environmental effects and natural events will be the significant achievement of this research.
Resumo:
Total Artificial Hearts are mechanical pumps which can be used to replace the failing natural heart. This novel study developed a means of controlling a new design of pump to reproduce physiological flow bringing closer the realisation of a practical artificial heart. Using a mathematical model of the device, an optimisation algorithm was used to determine the best configuration for the magnetic levitation system of the pump. The prototype device was constructed and tested in a mock circulation loop. A physiological controller was designed to replicate the Frank-Starling like balancing behaviour of the natural heart. The device and controller provided sufficient support for a human patient while also demonstrating good response to various physiological conditions and events. This novel work brings the design of a practical artificial heart closer to realisation.