291 resultados para Failure Probability
Resumo:
Critically ill patients receiving extracorporeal membrane oxygenation (ECMO) are often noted to have increased sedation requirements. However, data related to sedation in this complex group of patients is limited. The aim of our study was to characterise the sedation requirements in adult patients receiving ECMO for cardiorespiratory failure. A retrospective chart review was performed to collect sedation data for 30 consecutive patients who received venovenous or venoarterial ECMO between April 2009 and March 2011. To test for a difference in doses over time we used a regression model. The dose of midazolam received on ECMO support increased by an average of 18 mg per day (95% confidence interval 8, 29 mg, P=0.001), while the dose of morphine increased by 29 mg per day (95% confidence interval 4, 53 mg, P=0.021) The venovenous group received a daily midazolam dose that was 157 mg higher than the venoarterial group (95% confidence interval 53, 261 mg, P=0.005). We did not observe any significant increase in fentanyl doses over time (95% confidence interval 1269, 4337 µg, P=0.94). There is a significant increase in dose requirement for morphine and midazolam during ECMO. Patients on venovenous ECMO received higher sedative doses as compared to patients on venoarterial ECMO. Future research should focus on mechanisms behind these changes and also identify drugs that are most suitable for sedation during ECMO.
Resumo:
The purpose of this study was to describe patterns of medical and nursing practice in the care of patients dying of oncological and hematological malignancies in the acute care setting in Australia. A tool validated in a similar American study was used to study the medical records of 100 consecutive patients who died of oncological or hematological malignancies before August 1999 at The Canberra Hospital in the Australian Capital Territory. The three major indicators of patterns of end-of-life care were documentation of Do Not Resuscitate (DNR) orders, evidence that the patient was considered dying, and the presence of a palliative care intention. Findings were that 88 patients were documented DNR, 63 patients' records suggested that the patient was dying, and 74 patients had evidence of a palliative care plan. Forty-six patients were documented DNR 2 days or less prior to death and, of these, 12 were documented the day of death. Similar patterns emerged for days between considered dying and death, and between palliative care goals and death. Sixty patients had active treatment in progress at the time of death. The late implementation of end-of-life management plans and the lack of consistency within these plans suggested that patients were subjected to medical interventions and investigations up to the time of death. Implications for palliative care teams include the need to educate health care staff and to plan and implement policy regarding the management of dying patients in the acute care setting. Although the health care system in Australia has cultural differences when compared to the American context, this research suggests that the treatment imperative to prolong life is similar to that found in American-based studies.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
It is trite law that a lawyer owes their client a duty of care requiring the lawyer to take reasonable steps to avoid their client suffering foreseeable economiic loss: Hawkins v Clayton. In the context of a property transaction this will include a duty to warn the client of anything that is unusual or anything which may affect the client obtaining the full benefit of the contract entered into: Macindoe v Parbery.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
This volume puts together the works of a group of distinguished scholars and active researchers in the field of media and communication studies to reflect upon the past, present, and future of new media research. The chapters examine the implications of new media technologies on everyday life, existing social institutions, and the society at large at various levels of analysis. Macro-level analyses of changing techno-social formation – such as discussions of the rise of surveillance society and the "fifth estate" – are combined with studies on concrete and specific new media phenomena, such as the rise of Pro-Am collaboration and "fan labor" online. In the process, prominent concepts in the field of new media studies, such as social capital, displacement, and convergence, are critically examined, while new theoretical perspectives are proposed and explicated. Reflecting the inter-disciplinary nature of the field of new media studies and communication research in general, the chapters interrogate into the problematic through a range of theoretical and methodological approaches. The book should offer students and researchers who are interested in the social impact of new media both critical reviews of the existing literature and inspirations for developing new research questions.
Resumo:
The decision of Applegarth J in Heartwood Architectural & Joinery Pty Ltd v Redchip Lawyers [2009] QSC 195 (27 July 2009) involved a costs order against solicitors personally. This decision is but one of several recent decisions in which the court has been persuaded that the circumstances justified costs orders against legal practitioners on the indemnity basis. These decisions serve as a reminder to practitioners of their disclosure obligations when seeking any interlocutory relief in an ex parte application. These obligations are now clearly set out in r 14.4 of the Legal Profession (Solicitors) Rule 2007 and r 25 of 2007 Barristers Rule. Inexperience or ignorance will not excuse breaches of the duties owed to the court.
Resumo:
Structural framing systems and mechanisms designed for normal use rarely possess adequate robustness to withstand the effects of large impacts, blasts and extreme earthquakes that have been experienced in recent times. Robustness is the property of systems that enables them to survive unforeseen or unusual circumstances (Knoll & Vogel, 2009). Queensland University of Technology with industry collaboration is engaged in a program of research that commenced 15 years ago to study the impact of such unforeseeable phenomena and investigate methods of improving robustness and safety with protective mechanisms embedded or designed in structural systems. This paper highlights some of the research pertaining to seismic protection of building structures, rollover protective structures and effects of vehicular impact and blast on key elements in structures that could propagate catastrophic and disproportionate collapse.
Resumo:
Unlike most normal construction projects, post-disaster housing projects are diverse in nature, have unique socio-cultural and economical requirements, and are extremely dynamic and thus necessitate a meaningful and dynamic response. Post-disaster reconstruction practices that lack a strategy compatible with the severity of disaster, community culture, socio-economic requirements, environmental condition, government legislations, and technical and technological situations, often fail to operate and respond effectively to the needs of the wider affected population. Factors that frequently pose real threats to the eventual success of reconstruction projects are rarely given appropriate consideration when designing such projects. Research into past reconstruction practices has shown that ignoring these factors altogether or failing to give them meaningful consideration can affect housing reconstruction projects. In other words, they either miss their targets altogether or undergo serious modifications after their occupancy, subsequently resulting in an overall loss of project resources. This article touches upon the common factors that negatively impact the outcome of such projects.