233 resultados para Distributed artificial intelligence - multiagent systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient face detection method suitable for real-time surveillance applications. Improved efficiency is achieved by constraining the search window of an AdaBoost face detector to pre-selected regions. Firstly, the proposed method takes a sparse grid of sample pixels from the image to reduce whole image scan time. A fusion of foreground segmentation and skin colour segmentation is then used to select candidate face regions. Finally, a classifier-based face detector is applied only to selected regions to verify the presence of a face (the Viola-Jones detector is used in this paper). The proposed system is evaluated using 640 x 480 pixels test images and compared with other relevant methods. Experimental results show that the proposed method reduces the detection time to 42 ms, where the Viola-Jones detector alone requires 565 ms (on a desktop processor). This improvement makes the face detector suitable for real-time applications. Furthermore, the proposed method requires 50% of the computation time of the best competing method, while reducing the false positive rate by 3.2% and maintaining the same hit rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speaker diarization determines instances of the same speaker within a recording. Extending this task to a collection of recordings for linking together segments spoken by a unique speaker requires speaker linking. In this paper we propose a speaker linking system using linkage clustering and state-of-the-art speaker recognition techniques. We evaluate our approach against two baseline linking systems using agglomerative cluster merging (AC) and agglomerative clustering with model retraining (ACR). We demonstrate that our linking method, using complete-linkage clustering, provides a relative improvement of 20% and 29% in attribution error rate (AER), over the AC and ACR systems, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose and evaluate a speaker attribution system using a complete-linkage clustering method. Speaker attribution refers to the annotation of a collection of spoken audio based on speaker identities. This can be achieved using diarization and speaker linking. The main challenge associated with attribution is achieving computational efficiency when dealing with large audio archives. Traditional agglomerative clustering methods with model merging and retraining are not feasible for this purpose. This has motivated the use of linkage clustering methods without retraining. We first propose a diarization system using complete-linkage clustering and show that it outperforms traditional agglomerative and single-linkage clustering based diarization systems with a relative improvement of 40% and 68%, respectively. We then propose a complete-linkage speaker linking system to achieve attribution and demonstrate a 26% relative improvement in attribution error rate (AER) over the single-linkage speaker linking approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-world AI systems have been recently deployed which can automatically analyze the plan and tactics of tennis players. As the game-state is updated regularly at short intervals (i.e. point-level), a library of successful and unsuccessful plans of a player can be learnt over time. Given the relative strengths and weaknesses of a player’s plans, a set of proven plans or tactics from the library that characterize a player can be identified. For low-scoring, continuous team sports like soccer, such analysis for multi-agent teams does not exist as the game is not segmented into “discretized” plays (i.e. plans), making it difficult to obtain a library that characterizes a team’s behavior. Additionally, as player tracking data is costly and difficult to obtain, we only have partial team tracings in the form of ball actions which makes this problem even more difficult. In this paper, we propose a method to overcome these issues by representing team behavior via play-segments, which are spatio-temporal descriptions of ball movement over fixed windows of time. Using these representations we can characterize team behavior from entropy maps, which give a measure of predictability of team behaviors across the field. We show the efficacy and applicability of our method on the 2010-2011 English Premier League soccer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reasoning with uncertain knowledge and belief has long been recognized as an important research issue in Artificial Intelligence (AI). Several methodologies have been proposed in the past, including knowledge-based systems, fuzzy sets, and probability theory. The probabilistic approach became popular mainly due to a knowledge representation framework called Bayesian networks. Bayesian networks have earned reputation of being powerful tools for modeling complex problem involving uncertain knowledge. Uncertain knowledge exists in domains such as medicine, law, geographical information systems and design as it is difficult to retrieve all knowledge and experience from experts. In design domain, experts believe that design style is an intangible concept and that its knowledge is difficult to be presented in a formal way. The aim of the research is to find ways to represent design style knowledge in Bayesian net works. We showed that these networks can be used for diagnosis (inferences) and classification of design style. The furniture design style is selected as an example domain, however the method can be used for any other domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time plays an important role in norms. In this paper we start from our previously proposed classification of obligations, and point out some shortcomings of Event Calculus (EC) to represent obligations. We proposed an extension of EC that avoids such shortcomings and we show how to use it to model the various types of obligations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates the possibility of using an adaptive tutoring system for beginning programming students. The work involved, designing, developing and evaluating such a system and showing that it was effective in increasing the students’ test scores. In doing so, Artificial Intelligence techniques were used to analyse PHP programs written by students and to provide feedback based on any specific errors made by them. Methods were also included to provide students with the next best exercise to suit their particular level of knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering identities in a broadcast video is a useful task to aid in video annotation and retrieval. Quality based frame selection is a crucial task in video face clustering, to both improve the clustering performance and reduce the computational cost. We present a frame work that selects the highest quality frames available in a video to cluster the face. This frame selection technique is based on low level and high level features (face symmetry, sharpness, contrast and brightness) to select the highest quality facial images available in a face sequence for clustering. We also consider the temporal distribution of the faces to ensure that selected faces are taken at times distributed throughout the sequence. Normalized feature scores are fused and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face clustering system. We present a news video database to evaluate the clustering system performance. Experiments on the newly created news database show that the proposed method selects the best quality face images in the video sequence, resulting in improved clustering performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term autonomy in robotics requires perception systems that are resilient to unusual but realistic conditions that will eventually occur during extended missions. For example, unmanned ground vehicles (UGVs) need to be capable of operating safely in adverse and low-visibility conditions, such as at night or in the presence of smoke. The key to a resilient UGV perception system lies in the use of multiple sensor modalities, e.g., operating at different frequencies of the electromagnetic spectrum, to compensate for the limitations of a single sensor type. In this paper, visual and infrared imaging are combined in a Visual-SLAM algorithm to achieve localization. We propose to evaluate the quality of data provided by each sensor modality prior to data combination. This evaluation is used to discard low-quality data, i.e., data most likely to induce large localization errors. In this way, perceptual failures are anticipated and mitigated. An extensive experimental evaluation is conducted on data sets collected with a UGV in a range of environments and adverse conditions, including the presence of smoke (obstructing the visual camera), fire, extreme heat (saturating the infrared camera), low-light conditions (dusk), and at night with sudden variations of artificial light. A total of 240 trajectory estimates are obtained using five different variations of data sources and data combination strategies in the localization method. In particular, the proposed approach for selective data combination is compared to methods using a single sensor type or combining both modalities without preselection. We show that the proposed framework allows for camera-based localization resilient to a large range of low-visibility conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to promote the integrity of perception systems for outdoor unmanned ground vehicles (UGV) operating in challenging environmental conditions (presence of dust or smoke). The proposed technique automatically evaluates the consistency of the data provided by two sensing modalities: a 2D laser range finder and a millimetre-wave radar, allowing for perceptual failure mitigation. Experimental results, obtained with a UGV operating in rural environments, and an error analysis validate the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an approach to achieve resilient navigation for indoor mobile robots. Resilient navigation seeks to mitigate the impact of control, localisation, or map errors on the safety of the platform while enforcing the robot’s ability to achieve its goal. We show that resilience to unpredictable errors can be achieved by combining the benefits of independent and complementary algorithmic approaches to navigation, or modalities, each tuned to a particular type of environment or situation. In this paper, the modalities comprise a path planning method and a reactive motion strategy. While the robot navigates, a Hidden Markov Model continually estimates the most appropriate modality based on two types of information: context (information known a priori) and monitoring (evaluating unpredictable aspects of the current situation). The robot then uses the recommended modality, switching between one and another dynamically. Experimental validation with a SegwayRMP- based platform in an office environment shows that our approach enables failure mitigation while maintaining the safety of the platform. The robot is shown to reach its goal in the presence of: 1) unpredicted control errors, 2) unexpected map errors and 3) a large injected localisation fault.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to contribute to the reliability and integrity of perceptual systems of unmanned ground vehicles (UGV). A method is proposed to evaluate the quality of sensor data prior to its use in a perception system by utilising a quality metric applied to heterogeneous sensor data such as visual and infrared camera images. The concept is illustrated specifically with sensor data that is evaluated prior to the use of the data in a standard SIFT feature extraction and matching technique. The method is then evaluated using various experimental data sets that were collected from a UGV in challenging environmental conditions, represented by the presence of airborne dust and smoke. In the first series of experiments, a motionless vehicle is observing a ’reference’ scene, then the method is extended to the case of a moving vehicle by compensating for its motion. This paper shows that it is possible to anticipate degradation of a perception algorithm by evaluating the input data prior to any actual execution of the algorithm.