296 resultados para DIMENSIONAL COORDINATION POLYMERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do agents with limited cognitive capacities flourish in informationally impoverished or unexpected circumstances? Aristotle argued that human flourishing emerged from knowing about the world and our place within it. If he is right, then the virtuous processes that produce knowledge, best explain flourishing. Influenced by Aristotle, virtue epistemology defends an analysis of knowledge where beliefs are evaluated for their truth and the intellectual virtue or competences relied on in their creation. However, human flourishing may emerge from how degrees of ignorance are managed in an uncertain world. Perhaps decision-making in the shadow of knowledge best explains human wellbeing—a Bayesian approach? In this dissertation I argue that a hybrid of virtue and Bayesian epistemologies explains human flourishing—what I term homeostatic epistemology. Homeostatic epistemology supposes that an agent has a rational credence p when p is the product of reliable processes aligned with the norms of probability theory; whereas an agent knows that p when a rational credence p is the product of reliable processes such that: 1) p meets some relevant threshold for belief (such that the agent acts as though p were true and indeed p is true), 2) p coheres with a satisficing set of relevant beliefs and, 3) the relevant set of beliefs is coordinated appropriately to meet the integrated aims of the agent. Homeostatic epistemology recognizes that justificatory relationships between beliefs are constantly changing to combat uncertainties and to take advantage of predictable circumstances. Contrary to holism, justification is built up and broken down across limited sets like the anabolic and catabolic processes that maintain homeostasis in the cells, organs and systems of the body. It is the coordination of choristic sets of reliably produced beliefs that create the greatest flourishing given the limitations inherent in the situated agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The encapsulation and release of bioactive molecules from polymeric vehicles represents the holy grail of drug and growth factor delivery therapies, whereby sustained and controlled release is crucial in eliciting a positive therapeutic effect. To this end, electrospraying is rapidly emerging as a popular technology for the production of polymeric particles containing bioactive molecules. Compared with traditional emulsion fabrication techniques, electrospraying has the potential to reduce denaturation of protein drugs and affords tighter regulation over particle size distribution and morphology. In this article, we review the importance of the electrospraying parameters that enable reproducible tailoring of the particles' physical and in vitro drug release characteristics, along with discussion of existing in vivo data. Controlled morphology and monodispersity of particles can be achieved with electrospraying, with high encapsulation efficiencies and without unfavorable denaturation of bioactive molecules throughout the process. Finally, the combination of electrospraying with electrospun scaffolds, with an emphasis on tissue regeneration is reviewed, depicting a technique in its relative infancy but holding great promise for the future of regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, synthetic biodegradable polymers, such as aliphatic polyesters, are largely used in tissue engineering. They provide several advantages compared to natural materials which use is limited by immunocompatibility, graft availability, etc. In this work, poly(L-lactic) acid (PLLA), poly(DL-lactic) acid (PDLA), poly-epsilon-caprolactone (PCL), poly(L-lactic)-co-caprolactone (molar ratio 70/30) (PLCL) were selected because of their common use in tissue engineering. The membranes were elaborated by solvent casting. Membrane morphology was investigated by atomic force microscopy. The membranes were seeded with human fibroblasts from cell line CRL 2703 in order to evaluate the biocompatibility by the Alamar blue test. The roughness of the membranes ranged from 4 nm for PDLA to 120 nm and they presented very smooth surface except for PCL which beside a macroscopic structure due to its hydrophobicity. Human fibroblasts proliferated over 28 days on the membranes proving the non-in vitro toxicity of the materials and of the processing method. A further step will be the fabrication of three-dimensional scaffold for tissue engineering and the treatment of the scaffolds to augment cell adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of suitable tissue to replace natural blood vessels requires a degradable scaffold material that is processable into porous structures with appropriate mechanical and cell growth properties. This study investigates the fabrication of degradable, crosslinkable prepolymers of l-lactide-co-trimethylene carbonate into porous scaffolds by electrospinning. After crosslinking by γ-radiation, dimensionally stable scaffolds were obtained with up to 56% trimethylene carbonate incorporation. The fibrous mats showed Young’s moduli closely matching human arteries (0.4–0.8 MPa). Repeated cyclic extension yielded negligible change in mechanical properties, demonstrating the potential for use under dynamic physiological conditions. The scaffolds remained elastic and resilient at 30% strain after 84 days of degradation in phosphate buffer, while the modulus and ultimate stress and strain progressively decreased. The electrospun mats are mechanically superior to solid films of the same materials. In vitro, human mesenchymal stem cells adhered to and readily proliferated on the three-dimensional fiber network, demonstrating that these polymers may find use in growing artificial blood vessels in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One limitation of electrospinning stems from the charge build-up that occurs during processing, preventing further fibre deposition and limiting the scaffold overall thickness and hence their end-use in tissue engineering applications targeting large tissue defect repair. To overcome this, we have developed a technique in which thermally induced phase separation (TIPS) and electrospinning are combined. Thick three-dimensional, multilayered composite scaffolds were produced by simply stacking individual polycaprolactone (PCL) microfibrous electrospun discs into a cylindrical holder that was filled with a 3% poly(lactic-co-glycolic acid) (PLGA) solution in dimethylsulfoxide (a good solvent for PLGA but a poor one for PCL). The construct was quenched in liquid nitrogen and the solvent removed by leaching out in cold water. This technique enables the fabrication of scaffolds composed principally of electrospun membranes that have no limit to their thickness. The mechanical properties of these scaffolds were assessed under both quasi-static and dynamic conditions. The multilayered composite scaffolds had similar compressive properties to 5% PCL scaffolds fabricated solely by the TIPS methodology. However, tensile tests demonstrated that the multilayered construct outperformed a scaffold made purely by TIPS, highlighting the contribution of the electrospun component of the composite scaffold to enhancing the overall mechanical property slate. Cell studies revealed cell infiltration principally from the scaffold edges under static seeding conditions. This fabrication methodology permits the rapid construction of thick, strong scaffolds from a range of biodegradable polymers often used in tissue engineering, and will be particularly useful when large dimension electrospun scaffolds are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the use of finite element (FE) technique to investigate the behaviour of laminated glass (LG) panels under blast loads. Two and three dimensional (2D and 3D) modelling approaches available in LS-DYNA FE code to model LG panels are presented. Results from the FE analysis for mid-span deflection and principal stresses compared well with those from large deflection plate theory. The FE models are further validated using the results from a free field blast test on a LG panel. It is evident that both 2D and 3D LG models predict the experimental results with reasonable accuracy. The 3D LG models give slightly more accurate results but require considerably more computational time compared to the 2D LG models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation seeks to define and classify potential forms of Nonlinear structure and explore the possibilities they afford for the creation of new musical works. It provides the first comprehensive framework for the discussion of Nonlinear structure in musical works and provides a detailed overview of the rise of nonlinearity in music during the 20th century. Nonlinear events are shown to emerge through significant parametrical discontinuity at the boundaries between regions of relatively strong internal cohesion. The dissertation situates Nonlinear structures in relation to linear structures and unstructured sonic phenomena and provides a means of evaluating Nonlinearity in a musical structure through the consideration of the degree to which the structure is integrated, contingent, compressible and determinate as a whole. It is proposed that Nonlinearity can be classified as a three dimensional space described by three continuums: the temporal continuum, encompassing sequential and multilinear forms of organization, the narrative continuum encompassing processual, game structure and developmental narrative forms and the referential continuum encompassing stylistic allusion, adaptation and quotation. The use of spectrograms of recorded musical works is proposed as a means of evaluating Nonlinearity in a musical work through the visual representation of parametrical divergence in pitch, duration, timbre and dynamic over time. Spectral and structural analysis of repertoire works is undertaken as part of an exploration of musical nonlinearity and the compositional and performative features that characterize it. The contribution of cultural, ideological, scientific and technological shifts to the emergence of Nonlinearity in music is discussed and a range of compositional factors that contributed to the emergence of musical Nonlinearity is examined. The evolution of notational innovations from the mobile score to the screen score is plotted and a novel framework for the discussion of these forms of musical transmission is proposed. A computer coordinated performative model is discussed, in which a computer synchronises screening of notational information, provides temporal coordination of the performers through click-tracks or similar methods and synchronises the audio processing and synthesized elements of the work. It is proposed that such a model constitutes a highly effective means of realizing complex Nonlinear structures. A creative folio comprising 29 original works that explore nonlinearity is presented, discussed and categorised utilising the proposed classifications. Spectrograms of these works are employed where appropriate to illustrate the instantiation of parametrically divergent substructures and examples of structural openness through multiple versioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the mechanical properties of different two-dimensional carbon heterojunctions (HJs) made from graphene and various stable graphene allotropes, including α-, β-, γ- and 6612-graphyne (GY), and graphdiyne (GDY). It is found that all HJs exhibit a brittle behaviour except the one with α-GY, which however shows a hardening process due to the formation of triple carbon rings. Such hardening process has greatly deferred the failure of the structure. The yielding of the HJs is usually initiated at the interface between graphene and graphene allotropes, and monoatomic carbon rings are normally formed after yielding. By varying the locations of graphene (either in the middle or at the two ends of the HJs), similar mechanical properties have been obtained, suggesting insignificant impacts from location of graphene allotropes. Whereas, changing the types and percentages of the graphene allotropes, the HJs exhibit vastly different mechanical properties. In general, with the increasing graphene percentage, the yield strain decreases and the effective Young’s modulus increases. Meanwhile, the yield stress appears irrelevant with the graphene percentage. This study provides a fundamental understanding of the tensile properties of the heterojunctions that are crucial for the design and engineering of their mechanical properties, in order to facilitate their emerging future applications in nanoscale devices, such as flexible/stretchable electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ atomic force microscopy (AFM) allows images from the upper face and sides of TCNQ crystals to be monitored during the course of the electrochemical solid–solid state conversion of 50 × 50 μm2 three-dimensional drop cast crystals of TCNQ to CuTCNQ or M[TCNQ]2(H2O)2 (M = Co, Ni). Ex situ images obtained by scanning electron microscopy (SEM) also allow the bottom face of the TCNQ crystals, in contact with the indium tin oxide or gold electrode surface and aqueous metal electrolyte solution, to be examined. Results show that by carefully controlling the reaction conditions, nearly mono-dispersed, rod-like phase I CuTCNQ or M[TCNQ]2(H2O)2 can be achieved on all faces. However, CuTCNQ has two different phases, and the transformation of rod-like phase 1 to rhombic-like phase 2 achieved under conditions of cyclic voltammetry was monitored in situ by AFM. The similarity of in situ AFM results with ex situ SEM studies accomplished previously implies that the morphology of the samples remains unchanged when the solvent environment is removed. In the process of crystal transformation, the triple phase solid∣electrode∣electrolyte junction is confirmed to be the initial nucleation site. Raman spectra and AFM images suggest that 100% interconversion is not always achieved, even after extended electrolysis of large 50 × 50 μm2 TCNQ crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an efficient solar-light-driven photocatalyst based on three-dimensional nanoporous tungsten trioxide (WO3) films. These films are obtained by anodizing W foils in fluoride-containing electrolytes at room temperature and under low applied voltages with an efficient growth rate of 2 μm h− 1. The maximum thickness of the films is ~ 3 μm that exceeds those of previously reported anodized WO3 films in fluoride-containing electrolytes. By investigating the photocatalytic properties of the films with thicknesses ranging from ~ 0.5 to ~ 3 μm, the optimum thickness of the nanoporous film is found to be ~ 1 μm, which demonstrates an impressive 120% improvement in the photocatalytic performance compared to that of a RF-sputtered nanotextured film with similar weights. We mainly ascribe this to large surface area and smaller bandgap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The realistic strength and deflection behavior of industrial and commercial steel portal frame buildings are understood only if the effects of rigidity of end frames and profiled steel claddings are included. The conventional designs ignore these effects and are very much based on idealized two-dimensional (2D) frame behavior. Full-scale tests of a 1212 m steel portal frame building under a range of design load cases indicated that the observed deflections and bending moments in the portal frame were considerably different from those obtained from a 2D analysis of frames ignoring these effects. Three-dimensional (3D) analyses of the same building, including the effects of end frames and cladding, were carried out, and the results agreed well with full-scale test results. Results clearly indicated the need for such an analysis and for testing to study the true behavior of steel portal frame buildings. It is expected that such a 3D analysis will lead to lighter steel frames as the maximum moments and deflections are reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advancing the development of good practice around the teaching team has been the focus of a recently completed, nationally funded Australian grant entitled Coordinators Leading Advancement of Sessional Staff (CLASS). The project focused on developing leadership capacity of subject coordinators to provide supportive contexts for sessional staff to enhance their knowledge of teaching practice and contribute to subject improvement through a team approach. An action learning approach and notions of distributed leadership underpinned the activities of the teaching teams in the program. This paper provides an overview of a practical approach, led by the subject coordinator, to engaging sessional staff through the facilitation of a supportive network within the teaching team. It addresses some of the gaps identified in the recent literature which includes lack of role clarity for all members of the team and provides some examples of initiatives that teams engaged with to address some of the challenges identified. Resources to support this approach were developed and are shared through the project website. Recommendations for future direction include improved policy and practice at the institutional level, better recognition and reward for subject coordinators and resourcing to support the participation and professional development needs of sessional staff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.