205 resultados para Corticospinal tract
Resumo:
Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.
Resumo:
To identify key regulatory mechanisms in the growth and development of the human endometrium, microarray analysis was performed on uncultured human endometrium collected during menstruation (M) and the late-proliferative (LATE-P)-phase of the menstrual cycle, as well as after 24 h incubation in the presence of oestradiol (17beta-E2). We demonstrate the expression of novel gene transcripts in the human endometrium. i.e. mucin-9, novel oestrogen-responsive gene transcripts, i.e. gelsolin and flotillin-1, and genes known to be expressed in human endometrium but not yet shown to be oestrogen responsive, i.e. connexin-37 and TFF1/pS2. Genes reported to be expressed during the implantation window and implicated in progesterone action, i.e. secretoglobin family 2A, member 2 (mammaglobin) and homeobox-containing proteins, were up-regulated in uncultured LATE-P-phase endometrium compared to M-phase endometrium. Some gene transcripts are regulated directly by 17beta-E2 alone, others are influenced by the in vivo environment as well. These observations emphasise that the regulation of endometrium maturation by oestrogen entails more then just stimulation of cell proliferation.
Resumo:
Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.
Resumo:
BACKGROUND This paper describes the first national burden of disease study for South Africa. The main focus is the burden due to premature mortality, i.e. years of life lost (YLLs). In addition, estimates of the burden contributed by morbidity, i.e. the years lived with disability (YLDs), are obtained to calculate disability-adjusted life years (DALYs); and the impact of AIDS on premature mortality in the year 2010 is assessed. METHOD Owing to the rapid mortality transition and the lack of timely data, a modelling approach has been adopted. The total mortality for the year 2000 is estimated using a demographic and AIDS model. The non-AIDS cause-of-death profile is estimated using three sources of data: Statistics South Africa, the National Department of Home Affairs, and the National Injury Mortality Surveillance System. A ratio method is used to estimate the YLDs from the YLL estimates. RESULTS The top single cause of mortality burden was HIV/AIDS followed by homicide, tuberculosis, road traffic accidents and diarrhoea. HIV/AIDS accounted for 38% of total YLLs, which is proportionately higher for females (47%) than for males (33%). Pre-transitional diseases, usually associated with poverty and underdevelopment, accounted for 25%, non-communicable diseases 21% and injuries 16% of YLLs. The DALY estimates highlight the fact that mortality alone underestimates the burden of disease, especially with regard to unintentional injuries, respiratory disease, and nervous system, mental and sense organ disorders. The impact of HIV/AIDS is expected to more than double the burden of premature mortality by the year 2010. CONCLUSION This study has drawn together data from a range of sources to develop coherent estimates of premature mortality by cause. South Africa is experiencing a quadruple burden of disease comprising the pre-transitional diseases, the emerging chronic diseases, injuries, and HIV/AIDS. Unless interventions that reduce morbidity and delay morbidity become widely available, the burden due to HIV/AIDS can be expected to grow very rapidly in the next few years. An improved base of information is needed to assess the morbidity impact more accurately.
Resumo:
Objectives To quantify the burden of disease attributable to smoking in South Africa for 2000. Design The absolute difference between observed lung cancer death rate and the level in non-smokers, adjusted for occupational and indoor exposure to lung carcinogens, was used to estimate the proportion of lung cancer deaths attributable to smoking and the smoking impact ratio (SIR). The SIR was substituted for smoking prevalence in the attributable fraction formula for chronic obstructive pulmonary disease (COPD) and cancers to allow for the long lag between exposure and outcome. Assuming a shorter lag between exposure and disease, the current prevalence of smoking was used to estimate the population-attributable fractions (PAF) for the other outcomes. Relative risks (RR) from the American Cancer Society cancer prevention study (CPS-II) were used to calculate PAF. Setting South Africa. Outcome measures Deaths and disability-adjusted life years (DALYs) due to lung and other cancers, COPD, cardiovascular conditions, respiratory tuberculosis, and other respiratory and medical conditions. Results Smoking caused between 41 632 and 46 656 deaths in South Africa, accounting for 8.0 - 9.0% of deaths and 3.7 - 4.3% of DALYs in 2000. Smoking ranked third (after unsafe sex/sexually transmitted disease and high blood pressure) in terms of mortality among 17 risk factors evaluated. Three times as many males as females died from smoking. Lung cancer had the largest attributable fraction due to smoking. However, cardiovascular diseases accounted for the largest proportion of deaths attributed to smoking. Conclusion Cigarette smoking accounts for a large burden of preventable disease in South Africa. While the government has taken bold legislative action to discourage tobacco use since 1994, it still remains a major public health priority.
Resumo:
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide resulting in 4–5 million new cases of Chlamydia annually and an estimated 100 million cases per annum. Infections of the lower female genital tract (FGT) frequently are asymptomatic so they often remain undiagnosed or untreated. If infections are either not resolved, or are left untreated, chlamydia can ascend to the upper FGT and infect the fallopian tubes (FTs) causing salpingitis that may lead to functional damage of the FTs and tubal factor infertility (TFI). Clinical observations and experimental data have indicated a role for antibodies against C. trachomatis proteins such as the 60 kDa heat-shock protein 60 (cHSP60) in the immunopathogenesis of TFI. When released from infected cells cHSP60 can induce pro-inflammatory immune responses that may functionally impair the FTs leading to fibrosis and luminal occlusion. Chlamydial pathogenesis of irreversible and permanent tubal damage is a consequence of innate and adaptive host immune responses to ongoing or repeated infections. The extracellular matrix (ECM) that is regulated by metalloproteinases (MMPs) may also be modified by chlamydial infections of the FGT. This review will highlight protective and pathogenic immune responses to ongoing and repeated chlamydial infections of the FGT. It will also present two recent hypotheses to explain mechanisms that may contribute to FT damage during a C. trachomatis infection. If Chlamydia immunopathology can be controlled it might yield a method of inducing fibrosis and thus provide a means of non-surgical permanent contraception for women.
Resumo:
Objective: The incidence and cost of complications occurring in older and younger inpatients were compared. Design: Secondary analysis of hospital-recorded diagnosis and costs for multiday-stay inpatients in 68 public hospitals in two Australian states. Main outcome measures: A complication is defined as a hospital-acquired diagnosis that required additional treatment. The Australian Classification of Hospital-Acquired Diagnoses system is used to identify these complications. Results: Inpatients aged >70 years have a 10.9% complication rate, which is not substantially different from the 10.89% complication rate found in patients aged <70 years. Examination of the probability by single years, however, showed that the peak incidence associated with the neonatal period and childbirth is balanced by rates of up to 20% in patients >80 years. Examining the adult patient population (40–70 years), we found that while some common complications are not age specific (electrolyte disorders and cardiac arrhythmias), others (urinary tract and lower respiratory tract infections) are more common in the older adult inpatient. Conclusion: For inpatients aged >70 years, the risks of complications increase. The incidence of hospital-acquired diagnoses in older adults differs significantly from incidence rates found in younger cohorts. Urinary tract infection and alteration to mental state are more common in older adult inpatients. Surprisingly, these complexities do not result in additional costs when compared with costs for the same complications in younger adults. Greater awareness of these differing patterns will allow patient safety efforts for older patients to focus on complications with the highest incidence and cost.
Resumo:
IgA is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intraepithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant SIgA we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra and intraepithelial stages of infection. We developed an in vitro model utilizing polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model utilizing pIgR-/- mice. SIgA targeting the extraepithelial chlamydial antigen, the major outer membrane protein (MOMP), significantly reduced infection in vitro by 24 % and in vivo by 44 %. Conversely, pIgR-mediated delivery of IgA targeting the intraepithelial inclusion membrane protein A (IncA) bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intraepithelial IgA targeting the secreted protease Chlamydia protease-like activity factor (CPAF) also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra but not intraepithelial chlamydial antigens for protection against a genital tract infection.
Resumo:
Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. Results Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. Conclusions These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights.
Resumo:
Several clinical studies suggest the involvement of premature ageing processes in chronic obstructive pulmonary disease (COPD). Using an epidemiological approach, we studied whether accelerated ageing indicated by telomere length, a marker of biological age, is associated with COPD and asthma, and whether intrinsic age-related processes contribute to the interindividual variability of lung function. Our meta-analysis of 14 studies included 934 COPD cases with 15 846 controls defined according to the Global Lungs Initiative (GLI) criteria (or 1189 COPD cases according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria), 2834 asthma cases with 28 195 controls, and spirometric parameters (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC) of 12 595 individuals. Associations with telomere length were tested by linear regression, adjusting for age, sex and smoking status. We observed negative associations between telomere length and asthma (β= −0.0452, p=0.024) as well as COPD (β= −0.0982, p=0.001), with associations being stronger and more significant when using GLI criteria than those of GOLD. In both diseases, effects were stronger in females than males. The investigation of spirometric indices showed positive associations between telomere length and FEV1 (p=1.07×10−7), FVC (p=2.07×10−5), and FEV1/FVC (p=5.27×10−3). The effect was somewhat weaker in apparently healthy subjects than in COPD or asthma patients. Our results provide indirect evidence for the hypothesis that cellular senescence may contribute to the pathogenesis of COPD and asthma, and that lung function may reflect biological ageing primarily due to intrinsic processes, which are likely to be aggravated in lung diseases.
Resumo:
Introduction: Exposure to bioaerosols in indoor environments has been linked to various adverse health effects, such as airway disorders and upper respiratory tract symptoms. The aim of this study was to assess exposure to bioaerosols in the school environment in Brisbane, Australia. Methods: Culturable fungi and endotoxin measurements were conducted in six schools between October 2010 and May 2011. Culturable fungi (2 indoor air and 1-2 outdoor air samples per school) were assessed using a Biotest RCS High Flow Air Sampler, with a flow rate of either 50L/min or 20L/min. A rose pengar agar was used for recovery, which was incubated prior to counting and partial identification. Endotoxins were sampled (8h, 2L/min) using SKC glass fibre filters (4 indoor air samples per school) and analysed using an endpoint chromogenic LAL assay. Results: The arithmetic mean for fungi concentration in indoor and outdoor air was 710 cfu/m3(125- 1900 cfu/m3) and 524 cfu/m3 (140-1250 cfu/m3), respectively. The most frequently isolated fungal genus from the outdoor air was Cladosporium (over 40 %), followed by isolated Penicillium (21%) and Aspergillus (12%). The percent of Penicillium, Cladosporium and Aspergillus in indoor air samples was 32%, 32% and 8%, respectively. The aritmetic mean of endotoxin concentration was 0.59 EU/m3 (0-2,2 EU/m3). Discussion: The results of the current study are in agreement with previously reported studies, in that airborne fungi and endotoxin concentrations varied extensively, and were mostly dependent on climatic conditions. In addition, the indoor air mycoflora largely reflected the fungal flora present in the outdoor air, with Cladosporium being the most common in both outdoor and indoor (with Penicillium) air. In indoor air, unusually high endotoxin levels, over 1 EU/m3, were detected at 2 schools. Although these schools were not affected by the recent Brisbane floods, persistent rain prior to and during the study perios could explain the results.
Resumo:
Airborne bioaerosols are becoming increasingly recognized as a potential route of transmission for the spread of bacterial and viral respiratory tract infections.
Resumo:
Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.
Resumo:
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
Resumo:
Brain asymmetry, or the structural and functional specialization of each brain hemisphere, has fascinated neuroscientists for over a century. Even so, genetic and environmental factors that influence brain asymmetry are largely unknown. Diffusion tensor imaging (DTI) now allows asymmetry to be studied at a microscopic scale by examining differences in fiber characteristics across hemispheres rather than differences in structure shapes and volumes. Here we analyzed 4. Tesla DTI scans from 374 healthy adults, including 60 monozygotic twin pairs, 45 same-sex dizygotic pairs, and 164 mixed-sex DZ twins and their siblings; mean age: 24.4 years ± 1.9 SD). All DTI scans were nonlinearly aligned to a geometrically-symmetric, population-based image template. We computed voxel-wise maps of significant asymmetries (left/right differences) for common diffusion measures that reflect fiber integrity (fractional and geodesic anisotropy; FA, GA and mean diffusivity, MD). In quantitative genetic models computed from all same-sex twin pairs (N=210 subjects), genetic factors accounted for 33% of the variance in asymmetry for the inferior fronto-occipital fasciculus, 37% for the anterior thalamic radiation, and 20% for the forceps major and uncinate fasciculus (all L > R). Shared environmental factors accounted for around 15% of the variance in asymmetry for the cortico-spinal tract (R > L) and about 10% for the forceps minor (L > R). Sex differences in asymmetry (men > women) were significant, and were greatest in regions with prominent FA asymmetries. These maps identify heritable DTI-derived features, and may empower genome-wide searches for genetic polymorphisms that influence brain asymmetry.