542 resultados para Continual Reassessment Method
Resumo:
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.
Resumo:
The antiretroviral therapy (ART) program for People Living with HIV/AIDS (PLHIV) in Vietnam has been scaled up rapidly in recent years (from 50 clients in 2003 to almost 38,000 in 2009). ART success is highly dependent on the ability of the patients to fully adhere to the prescribed treatment regimen. Despite the remarkable extension of ART programs in Vietnam, HIV/AIDS program managers still have little reliable data on levels of ART adherence and factors that might promote or reduce adherence. Several previous studies in Vietnam estimated extremely high levels of ART adherence among their samples, although there are reasons to question the veracity of the conclusion that adherence is nearly perfect. Further, no study has quantitatively assessed the factors influencing ART adherence. In order to reduce these gaps, this study was designed to include several phases and used a multi-method approach to examine levels of ART non-adherence and its relationship to a range of demographic, clinical, social and psychological factors. The study began with an exploratory qualitative phase employing four focus group discussions and 30 in-depth interviews with PLHIV, peer educators, carers and health care providers (HCPs). Survey interviews were completed with 615 PLHIV in five rural and urban out-patient clinics in northern Vietnam using an Audio Computer Assisted Self-Interview (ACASI) and clinical records extraction. The survey instrument was carefully developed through a systematic procedure to ensure its reliability and validity. Cultural appropriateness was considered in the design and implementation of both the qualitative study and the cross sectional survey. The qualitative study uncovered several contrary perceptions between health care providers and HIV/AIDS patients regarding the true levels of ART adherence. Health care providers often stated that most of their patients closely adhered to their regimens, while PLHIV and their peers reported that “it is not easy” to do so. The quantitative survey findings supported the PLHIV and their peers’ point of view in the qualitative study, because non-adherence to ART was relatively common among the study sample. Using the ACASI technique, the estimated prevalence of onemonth non-adherence measured by the Visual Analogue Scale (VAS) was 24.9% and the prevalence of four-day not-on-time-adherence using the modified Adult AIDS Clinical Trials Group (AACTG) instrument was 29%. Observed agreement between the two measures was 84% and kappa coefficient was 0.60 (SE=0.04 and p<0.0001). The good agreement between the two measures in the current study is consistent with those found in previous research and provides evidence of cross-validation of the estimated adherence levels. The qualitative study was also valuable in suggesting important variables for the survey conceptual framework and instrument development. The survey confirmed significant correlations between two measures of ART adherence (i.e. dose adherence and time adherence) and many factors identified in the qualitative study, but failed to find evidence of significant correlations of some other factors and ART adherence. Non-adherence to ART was significantly associated with untreated depression, heavy alcohol use, illicit drug use, experiences with medication side-effects, chance health locus of control, low quality of information from HCPs, low satisfaction with received support and poor social connectedness. No multivariate association was observed between ART adherence and age, gender, education, duration of ART, the use of adherence aids, disclosure of ART, patients’ ability to initiate communication with HCPs or distance between clinic and patients’ residence. This is the largest study yet reported in Asia to examine non-adherence to ART and its possible determinants. The evidence strongly supports recent calls from other developing nations for HIV/AIDS services to provide screening, counseling and treatment for patients with depressive symptoms, heavy use of alcohol and substance use. Counseling should also address fatalistic beliefs about chance or luck determining health outcomes. The data suggest that adherence could be enhanced by regularly providing information on ART and assisting patients to maintain social connectedness with their family and the community. This study highlights the benefits of using a multi-method approach in examining complex barriers and facilitators of medication adherence. It also demonstrated the utility of the ACASI interview method to enhance open disclosure by people living with HIV/AIDS and thus, increase the veracity of self-reported data.
Resumo:
This paper reports the feasibility and methodological considerations of using the Short Message System Experience Sampling (SMS-ES) Method, which is an experience sampling research method developed to assist researchers to collect repeat measures of consumers’ affective experiences. The method combines SMS with web-based technology in a simple yet effective way. It is described using a practical implementation study that collected consumers’ emotions in response to using mobile phones in everyday situations. The method is further evaluated in terms of the quality of data collected in the study, as well as against the methodological considerations for experience sampling studies. These two evaluations suggest that the SMS-ES Method is both a valid and reliable approach for collecting consumers’ affective experiences. Moreover, the method can be applied across a range of for-profit and not-for-profit contexts where researchers want to capture repeated measures of consumers’ affective experiences occurring over a period of time. The benefits of the method are discussed to assist researchers who wish to apply the SMS-ES Method in their own research designs.
Resumo:
The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new method.
Resumo:
We consider a stochastic regularization method for solving the backward Cauchy problem in Banach spaces. An order of convergence is obtained on sourcewise representative elements.
Resumo:
Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity space, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.
Resumo:
The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The concept of using Shock Control Bump (SCB) is to control supersonic flow on the suction/pressure side of NLF aerofoil: RAE 5243 that leads to delaying shock occurrence or weakening its strength. Such AFC technique reduces total drag at transonic speeds due to reduction of wave drag. The location of Boundary Layer Transition (BLT) can influence the position the supersonic shock occurrence. The BLT position is an uncertainty in aerodynamic design due to the many factors, such as surface contamination or surface erosion. The paper studies the SCB shape design optimisation using robust Evolutionary Algorithms (EAs) with uncertainty in BLT positions. The optimisation method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. Two test cases are conducted; the first test assumes the BLT is at 45% of chord from the leading edge and the second test considers robust design optimisation for SCB at the variability of BLT positions and lift coefficient. Numerical result shows that the optimisation method coupled to uncertainty design techniques produces Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
The World Health Organization recommends that data on mortality in its member countries are collected utilising the Medical Certificate of Cause of Death published in the instruction volume of the ICD-10. However, investment in health information processes necessary to promote the use of this certificate and improve mortality information is lacking in many countries. An appeal for support to make improvements has been launched through the Health Metrics Network’s MOVE-IT strategy (Monitoring of Vital Events – Information Technology) [World Health Organization, 2011]. Despite this international spotlight on the need for capture of mortality data and in the use of the ICD-10 to code the data reported on such certificates, there is little cohesion in the way that certifiers of deaths receive instruction in how to complete the death certificate, which is the main source document for mortality statistics. Complete and accurate documentation of the immediate, underlying and contributory causes of death of the decedent on the death certificate is a requirement to produce standardised statistical information and to the ability to produce cause-specific mortality statistics that can be compared between populations and across time. This paper reports on a research project conducted to determine the efficacy and accessibility of the certification module of the WHO’s newly-developed web based training tool for coders and certifiers of deaths. Involving a population of medical students from the Fiji School of Medicine and a pre and post research design, the study entailed completion of death certificates based on vignettes before and after access to the training tool. The ability of the participants to complete the death certificates and analysis of the completeness and specificity of the ICD-10 coding of the reported causes of death were used to measure the effect of the students’ learning from the training tool. The quality of death certificate completion was assessed using a Quality Index before and after the participants accessed the training tool. In addition, the views of the participants about accessibility and use of the training tool were elicited using a supplementary questionnaire. The results of the study demonstrated improvement in the ability of the participants to complete death certificates completely and accurately according to best practice. The training tool was viewed very positively and its implementation in the curriculum for medical students was encouraged. Participants also recommended that interactive discussions to examine the certification exercises would be an advantage.
Resumo:
Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the feeder current are two constraints which should be maintained within their standard range. The distribution network planning is hardened when the planning area is located far from the sources of power generation and the infrastructure. This is mainly as a consequence of the voltage drop, line loss and system reliability. Long distance to supply loads causes a significant amount of voltage drop across the distribution lines. Capacitors and Voltage Regulators (VRs) can be installed to decrease the voltage drop. This long distance also increases the probability of occurrence of a failure. This high probability leads the network reliability to be low. Cross-Connections (CC) and Distributed Generators (DGs) are devices which can be employed for improving system reliability. Another main factor which should be considered in planning of distribution networks (in both rural and urban areas) is load growth. For supporting this factor, transformers and feeders are conventionally upgraded which applies a large cost. Installation of DGs and capacitors in a distribution network can alleviate this issue while the other benefits are gained. In this research, a comprehensive planning is presented for the distribution networks. Since the distribution network is composed of low and medium voltage networks, both are included in this procedure. However, the main focus of this research is on the medium voltage network planning. The main objective is to minimize the investment cost, the line loss, and the reliability indices for a study timeframe and to support load growth. The investment cost is related to the distribution network elements such as the transformers, feeders, capacitors, VRs, CCs, and DGs. The voltage drop and the feeder current as the constraints are maintained within their standard range. In addition to minimizing the reliability and line loss costs, the planned network should support a continual growth of loads, which is an essential concern in planning distribution networks. In this thesis, a novel segmentation-based strategy is proposed for including this factor. Using this strategy, the computation time is significantly reduced compared with the exhaustive search method as the accuracy is still acceptable. In addition to being applicable for considering the load growth, this strategy is appropriate for inclusion of practical load characteristic (dynamic), as demonstrated in this thesis. The allocation and sizing problem has a discrete nature with several local minima. This highlights the importance of selecting a proper optimization method. Modified discrete particle swarm optimization as a heuristic method is introduced in this research to solve this complex planning problem. Discrete nonlinear programming and genetic algorithm as an analytical and a heuristic method respectively are also applied to this problem to evaluate the proposed optimization method.
Resumo:
In this paper a new graph-theory and improved genetic algorithm based practical method is employed to solve the optimal sectionalizer switch placement problem. The proposed method determines the best locations of sectionalizer switching devices in distribution networks considering the effects of presence of distributed generation (DG) in fitness functions and other optimization constraints, providing the maximum number of costumers to be supplied by distributed generation sources in islanded distribution systems after possible faults. The proposed method is simulated and tested on several distribution test systems in both cases of with DG and non DG situations. The results of the simulations validate the proposed method for switch placement of the distribution network in the presence of distributed generation.
Resumo:
Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations.
Resumo:
This paper formulates a node-based smoothed conforming point interpolation method (NS-CPIM) for solid mechanics. In the proposed NS-CPIM, the higher order conforming PIM shape functions (CPIM) have been constructed to produce a continuous and piecewise quadratic displacement field over the whole problem domain, whereby the smoothed strain field was obtained through smoothing operation over each smoothing domain associated with domain nodes. The smoothed Galerkin weak form was then developed to create the discretized system equations. Numerical studies have demonstrated the following good properties: NS-CPIM (1) can pass both standard and quadratic patch test; (2) provides an upper bound of strain energy; (3) avoid the volumetric locking; (4) provides the higher accuracy than those in the node-based smoothed schemes of the original PIMs.
Resumo:
Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.
Resumo:
In this article, an enriched radial point interpolation method (e-RPIM) is developed for computational mechanics. The conventional radial basis function (RBF) interpolation is novelly augmented by the suitable basis functions to reflect the natural properties of deformation. The performance of the enriched meshless RBF shape functions is first investigated using the surface fitting. The surface fitting results have proven that, compared with the conventional RBF, the enriched RBF interpolation has a much better accuracy to fit a complex surface than the conventional RBF interpolation. It has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF interpolation, but also can accurately reflect the deformation properties of problems. The system of equations for two-dimensional solids is then derived based on the enriched RBF shape function and both of the meshless strong-form and weak-form. A numerical example of a bar is presented to study the effectiveness and efficiency of e-RPIM. As an important application, the newly developed e-RPIM, which is augmented by selected trigonometric basis functions, is applied to crack problems. It has been demonstrated that the present e-RPIM is very accurate and stable for fracture mechanics problems.