167 resultados para Bivariate Exponential
Resumo:
Background: Increased hospital readmission and longer stays in the hospital for patients with type 2 diabetes and cardiac disease can result in higher healthcare costs and heavier individual burden. Thus, knowledge of the characteristics and predictive factors for Vietnamese patients with type 2 diabetes and cardiac disease, at high risk of hospital readmission and longer stays in the hospital, could provide a better understanding on how to develop an effective care plan aimed at improving patient outcomes. However, information about factors influencing hospital readmission and length of stay of patients with type 2 diabetes and cardiac disease in Vietnam is limited. Aim: This study examined factors influencing hospital readmission and length of stay of Vietnamese patients with both type 2 diabetes and cardiac disease. Methods: An exploratory prospective study design was conducted on 209 patients with type 2 diabetes and cardiac disease in Vietnam. Data were collected from patient charts and patients' responses to self-administered questionnaires. Descriptive statistics, bivariate correlation, logistic and multiple regression were used to analyse the data. Results: The hospital readmission rate was 12.0% among patients with both type 2 diabetes and cardiac disease. The average length of stay in the hospital was 9.37 days. Older age (OR= 1.11, p< .05), increased duration of type 2 diabetes (OR= 1.22, p< .05), less engagement in stretching/strengthening exercise behaviours (OR= .93, p< .001) and in communication with physician (OR= .21, p< .001) were significant predictors of 30-dayhospital readmission. Increased number of additional co-morbidities (β= .33, p< .001) was a significant predictor of longer stays in the hospital. High levels of cognitive symptom management (β= .40, p< .001) significantly predicted longer stays in the hospital, indicating that the more patients practiced cognitive symptom management, the longer the stay in hospital. Conclusions: This study provides some evidence of factors influencing hospital readmission and length of stay and argues that this information may have significant implications for clinical practice in order to improve patients' health outcomes. However, the findings of this study related to the targeted hospital only. Additionally, the investigation of environmental factors is recommended for future research as these factors are important components contributing to the research model.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.