301 resultados para Bayesian operation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conservation of free-ranging cheetah (Acinonyx jubatus) populations is multi faceted and needs to be addressed from an ecological, biological and management perspective. There is a wealth of published research, each focusing on a particular aspect of cheetah conservation. Identifying the most important factors, making sense of various (and sometimes contrasting) findings, and taking decisions when little or no empirical data is available, are everyday challenges facing conservationists. Bayesian networks (BN) provide a statistical modeling framework that enables analysis and integration of information addressing different aspects of conservation. There has been an increased interest in the use of BNs to model conservation issues, however the development of more sophisticated BNs, utilizing object-oriented (OO) features, is still at the frontier of ecological research. We describe an integrated, parallel modeling process followed during a BN modeling workshop held in Namibia to combine expert knowledge and data about free-ranging cheetahs. The aim of the workshop was to obtain a more comprehensive view of the current viability of the free-ranging cheetah population in Namibia, and to predict the effect different scenarios may have on the future viability of this free-ranging cheetah population. Furthermore, a complementary aim was to identify influential parameters of the model to more effectively target those parameters having the greatest impact on population viability. The BN was developed by aggregating diverse perspectives from local and independent scientists, agents from the national ministry, conservation agency members and local fieldworkers. This integrated BN approach facilitates OO modeling in a multi-expert context which lends itself to a series of integrated, yet independent, subnetworks describing different scientific and management components. We created three subnetworks in parallel: a biological, ecological and human factors network, which were then combined to create a complete representation of free-ranging cheetah population viability. Such OOBNs have widespread relevance to the effective and targeted conservation management of vulnerable and endangered species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian networks (BNs) provide a statistical modelling framework which is ideally suited for modelling the many factors and components of complex problems such as healthcare-acquired infections. The methicillin-resistant Staphylococcus aureus (MRSA) organism is particularly troublesome since it is resistant to standard treatments for Staph infections. Overcrowding and understa�ng are believed to increase infection transmission rates and also to inhibit the effectiveness of disease control measures. Clearly the mechanisms behind MRSA transmission and containment are very complicated and control strategies may only be e�ective when used in combination. BNs are growing in popularity in general and in medical sciences in particular. A recent Current Content search of the number of published BN journal articles showed a fi�ve fold increase in general and a six fold increase in medical and veterinary science from 2000 to 2009. This chapter introduces the reader to Bayesian network (BN) modelling and an iterative modelling approach to build and test the BN created to investigate the possible role of high bed occupancy on transmission of MRSA while simultaneously taking into account other risk factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matern correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stations on Bus Rapid Transit (BRT) lines ordinarily control line capacity because they act as bottlenecks. At stations with passing lanes, congestion may occur when buses maneuvering into and out of the platform stopping lane interfere with bus flow, or when a queue of buses forms upstream of the station blocking inflow. We contend that, as bus inflow to the station area approaches capacity, queuing will become excessive in a manner similar to operation of a minor movement on an unsignalized intersection. This analogy is used to treat BRT station operation and to analyze the relationship between station queuing and capacity. In the first of three stages, we conducted microscopic simulation modeling to study and analyze operating characteristics of the station under near steady state conditions through output variables of capacity, degree of saturation and queuing. A mathematical model was then developed to estimate the relationship between average queue and degree of saturation and calibrated for a specified range of controlled scenarios of mean and coefficient of variation of dwell time. Finally, simulation results were calibrated and validated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostics is based on the characterization of mechanical system condition and allows early detection of a possible fault. Signal processing is an approach widely used in diagnostics, since it allows directly characterizing the state of the system. Several types of advanced signal processing techniques have been proposed in the last decades and added to more conventional ones. Seldom, these techniques are able to consider non-stationary operations. Diagnostics of roller bearings is not an exception of this framework. In this paper, a new vibration signal processing tool, able to perform roller bearing diagnostics in whatever working condition and noise level, is developed on the basis of two data-adaptive techniques as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED), coupled by means of the mathematics related to the Hilbert transform. The effectiveness of the new signal processing tool is proven by means of experimental data measured in a test-rig that employs high power industrial size components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring stream networks through time provides important ecological information. The sampling design problem is to choose locations where measurements are taken so as to maximise information gathered about physicochemical and biological variables on the stream network. This paper uses a pseudo-Bayesian approach, averaging a utility function over a prior distribution, in finding a design which maximizes the average utility. We use models for correlations of observations on the stream network that are based on stream network distances and described by moving average error models. Utility functions used reflect the needs of the experimenter, such as prediction of location values or estimation of parameters. We propose an algorithmic approach to design with the mean utility of a design estimated using Monte Carlo techniques and an exchange algorithm to search for optimal sampling designs. In particular we focus on the problem of finding an optimal design from a set of fixed designs and finding an optimal subset of a given set of sampling locations. As there are many different variables to measure, such as chemical, physical and biological measurements at each location, designs are derived from models based on different types of response variables: continuous, counts and proportions. We apply the methodology to a synthetic example and the Lake Eacham stream network on the Atherton Tablelands in Queensland, Australia. We show that the optimal designs depend very much on the choice of utility function, varying from space filling to clustered designs and mixtures of these, but given the utility function, designs are relatively robust to the type of response variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This overview article for the special series “Bayesian Networks in Environmental and Resource Management” reviews 7 case study articles with the aim to compare Bayesian network (BN) applications to different environmental and resource management problems from around the world. The article discusses advances in the last decade in the use of BNs as applied to environmental and resource management. We highlight progress in computational methods, best-practices for model design and model communication. We review several research challenges to the use of BNs in environmental and resource management that we think may find a solution in the near future with further research attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the relationship between macroscopic traffic parameters, such as flow, speed and travel time, is essential to the understanding of the behaviour of freeway and arterial roads. However, the temporal dynamics of these parameters are difficult to model, especially for arterial roads, where the process of traffic change is driven by a variety of variables. The introduction of the Bluetooth technology into the transportation area has proven exceptionally useful for monitoring vehicular traffic, as it allows reliable estimation of travel times and traffic demands. In this work, we propose an approach based on Bayesian networks for analyzing and predicting the complex dynamics of flow or volume, based on travel time observations from Bluetooth sensors. The spatio-temporal relationship between volume and travel time is captured through a first-order transition model, and a univariate Gaussian sensor model. The two models are trained and tested on travel time and volume data, from an arterial link, collected over a period of six days. To reduce the computational costs of the inference tasks, volume is converted into a discrete variable. The discretization process is carried out through a Self-Organizing Map. Preliminary results show that a simple Bayesian network can effectively estimate and predict the complex temporal dynamics of arterial volumes from the travel time data. Not only is the model well suited to produce posterior distributions over single past, current and future states; but it also allows computing the estimations of joint distributions, over sequences of states. Furthermore, the Bayesian network can achieve excellent prediction, even when the stream of travel time observation is partially incomplete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.