201 resultados para BORON-CENTERED RADICALS
Resumo:
The multilamellar structure of phospholipids, i.e. the surface amorphous layer (SAL) that covers the natural surface of articular cartilage, and hexagonal boron nitride (h-BN) on the surface of metal porous bearings are two prominent examples of the family of layered materials that possess the ability to deliver lamellar lubrication. This chapter presents the friction study that was conducted on the surfaces of cartilage and the metal porous bearing impregnated with oil (first generation) and with oil + h-BN (second generation). The porosity of cartilage is around 75% and those of metal porous bearings were 15–28 wt%. It is concluded that porosity is a critical factor in facilitating the excellent tribological properties of both articular cartilage and the porous metal bearings studied.
Resumo:
Globally, it is estimated that 24 million people live with schizophrenia (WHO, 2008), while 1.2 million people have been diagnosed with schizophrenia in Indonesia. Auditory hallucinations are a key symptom of schizophrenia according to the DSM IV-TR (Frances, First, & Pincus, 2002). It is estimated that the prevalence of auditory hallucinations in people with schizophrenia range from 64.3% to 83.4% (Thomas et al., 2007). Until recently, the majority of studies were conducted in Western societies the primary focus of which, has been on the causes and treatments of auditory hallucinations (Walton, 1999) and on the biological and cognitive aspects of the phenomenon (Changas, Garcia-Montes, de Lemus & Olivencia, 2003). While a few studies have explored the lived experience of people with schizophrenia, there is little research about the experience of auditory hallucinations. Therefore, the focus of this study was on an exploration of the experience of auditory hallucinations as described by Indonesian people living with schizophrenia. Based on the available literature, there have been no published qualitative studies relating to the lived experience of auditory hallucinations as described by Indonesian people diagnosed with schizophrenia. Husserlian descriptive phenomenological approach was applied in explicating the phenomenon of auditory hallucinations in this study. In-depth audio-taped interviews were conducted with 13 participants. Analysis of participant transcripts was undertaken using Colaizzi.s (1973) approach. Eight major themes were explicated: Feeling more like a robot than a human being - feeling compelled to respond to auditory hallucinations; voices of contradiction - a point of confusion; a frightening experience, the voices emerged at times of loss and grief; disruption to daily living; tattered relationships and family disarray; finding a personal path to living with auditory hallucinations; seeking relief in Allah through prayer and ritual. Experiencing auditory hallucinations for people diagnosed with schizophrenia is a journey of challenges as each individual struggles to understand their now changed life-world, reconstruct a sense of meaning within their illness experience, and to carve out a pathway to wellness. The challenge for practitioners is to learn from those who have experienced auditory hallucinations, to be with them in their journey of recovery and wellness, and to apply a person-centered approach to care within the context of a multidisciplinary team.
Resumo:
We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.
Resumo:
Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.
Resumo:
The number of culturally and linguistically diverse (CALD) students seeking enrollment in higher education courses in Western countries where English is the predominant language has grown considerably in the past decade, especially in undergraduate health care courses. When enrolled in nursing courses, students are required to complete clinical placements. Such experiences can create significant challenges for CALD students where language, cultural differences, and interpretation of cultural norms complicate the learning process. To assist CALD nursing students to transition successfully, an extracurricular integrated curriculum program was developed and implemented at a university in Queensland, Australia. The program is a series of interactive workshops based on the principles of caring pedagogy and student-centered learning. The program applies strategies that combine small-group discussions with peers, role-plays, and interactions with final-year nursing student volunteers. Evaluation of the program suggests it has assisted most of the students surveyed to be successful in their clinical studies.
Resumo:
The experiences of people affected by cancer are at the very heart of nursing research efforts. Because much of our work is focused on understanding how to improve experiences and outcomes for people with cancer, it is easy for us to believe that our research is inherently "person centered" and thus collaborative. Let's reflect on what truly collaborative approaches to cancer nursing research could be like, and how we measure up to such goals. Collaboration between people affected by cancer (consumers) and nurses in research is much more than providing a voice for individuals as participants in a research study. Today, research governing bodies in many countries require us to seek a different kind of consumer participation, where consumers and researchers work in partnership with one another to shape decisions about research priorities, policies, and practices.1 Most granting bodies now require explanations of how consumer and community participation will occur within a study. Ethical imperatives and the concept of patient advocacy also require that we give more considered attention to what is meant by consumer involvement.2 Consumers provide perspective on what will be relevant, acceptable, feasible, and sensitive research, having lived the experience of cancer. As a result, they offer practical insights that can ensure the successful conduct and better outcomes from research. Some granting bodies now even allocate a proportion of final score or assign a "public value" weighting for a grant, to recognize the importance of consumer involvement and reflect the quality of patient involvement in all stages of the research process.3
Resumo:
Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.
Resumo:
CubIT is a multi-user, large-scale presentation and collaboration framework installed at the Queensland University of Technology’s (QUT) Cube facility, an interactive facility made up 48 multi-touch screens and very large projected display screens. CubIT was built to make the Cube facility accessible to QUT’s academic and student population. The system allows users to upload, interact with and share media content on the Cube’s very large display surfaces. CubIT implements a unique combination of features including RFID authentication, content management through multiple interfaces, multi-user shared workspace support, drag and drop upload and sharing, dynamic state control between different parts of the system and execution and synchronisation of the system across multiple computing nodes.
Resumo:
Following the growing need for adoption of alternative fuels, this project aimed at getting more information on the oxidative potential of biodiesel particulate matter. Within this scope, the physical and chemical characteristics of biodiesel PM were analysed which lead to identification of reactive organic fractions. An in-house developed proflurescent nitroxide probe was used. This project further developed in-depth understanding of the chemical mechanisms following the detection of the oxidative potential of PM. This knowledge made a significant contribution to our understanding of processes behind negative health effects of pollution and enabled us to further develop new techniques to monitor it.
Resumo:
The CO2-methane reformation reaction over Ni/SiO2 catalysts has been extensively studied using a range of temperature-programmed techniques and characterisation of the catalysts by thermogravimetry (TG), X-ray diffraction (XRD) and electron microscopy (TEM). The results indicate a strong correlation between the microstructure of the catalyst and its performance. The role of both CO2 and CH4 in the reaction has been investigated and the role of methyl radicals in the reaction mechanism highlighted. A reaction mechanism involving dissociatively adsorbed CO2 and methyl radicals has been proposed.
Resumo:
Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.
Resumo:
There is a large number of boron containing minerals with water and/or hydroxyl units of which pinnoite MgB2O(OH)6 is one. Some discussion about the molecular structure of pinnoite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of pinnoite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by an intense band at 900 cm−1 assigned to the BO stretching vibrational mode. A series of bands in the 1000–1320 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. Multiple Raman OH stretching vibrations are found at 3179, 3399, 3554 and 3579 cm−1. The infrared spectrum shows a series of overlapping bands with bands identified at 3123, 3202, 3299, 3414, 3513 and 3594 cm−1. By using a Libowitzky type function, hydrogen bond distances were calculated. Two types of hydrogen bonds were identified based upon the hydrogen bond distance. It is important to understand the structure of pinnoite in order to form nanomaterials based upon the pinnoite structure.
Resumo:
We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH)⋅5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [B3O3(OH)5]2-[B3O3(OH)5]2- soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm−1 are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm−1 are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm−1 with sharper bands at 3459, 3530 and 3562 cm−1 assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite.
Resumo:
Comparison of well-determined single crystal data for stoichiometric, or near-stoichiometric, metal hexaborides con-firm previously identified lattice parameter trends using powder diffraction. Trends for both divalent and trivalent forms suggest that potential new forms for synthesis include Sc and Mn hexaborides. Density Functional Theory (DFT) calculations for KB6, CaB6, YB6, LaB6, boron octahedral clusters and Sc and Mn forms, show that the shapes of bonding orbitals are defined by the boron framework. Inclusion of metal into the boron framework induces a reduction in energy ranging from 1 eV to 6 eV increasing with ionic charge. For metals with d1 character, such a shift in energy brings a doubly degenerate band section along the G-M reciprocal space direction within the conduction bands tangential to the Fermi surface. ScB6 band structure and density of states calculations show directional and gap characteristics similar to those of YB6 and LaB6. These calculations for ScB6 suggest it may be possible to realize superconductivity in this compound if synthesized.
Resumo:
Mobile video, as an emerging market and a promising research field, has attracted much attention from both industry and researchers. Considering the quality of user-experience as the crux of mobile video services, this chapter aims to provide a guide to user-centered studies of mobile video quality. This will benefit future research in better understanding user needs and experiences, designing effective research, and providing solid solutions to improve the quality of mobile video. This chapter is organized in three main parts: (1) a review of recent user studies from the perspectives of research focuses, user study methods, and data analysis methods; (2) an example of conducting a user study of mobile video research, together with the discussion on a series of relative issues, such as participants, materials and devices, study procedure, and analysis results, and; (3) a conclusion with an open discussion about challenges and opportunities in mobile video related research, and associated potential future improvements.