171 resultados para At-fault crash
Resumo:
This paper presents some results from preliminary analyses of the data of an international online survey of bicycle riders, who reported riding at least once a month. On 4 July 2015, data from 7528 participants from 17 countries was available in the survey, and were subsequently cleaned and checked for consistency. The median distance ridden ranged from 30 km/week in Israel to 150 km/week in Greece (overall median 54 km/week). City/hybrid bicycles were the most common type of bicycle ridden (44%), followed by mountain (20%) and road bikes (15%). Almost half (47%) of the respondents rode “nearly daily”. About a quarter rode daily to work or study (27%). Overall, 40% of respondents reported wearing a helmet ‘always’, varying from 2% in the Netherlands to 80% in Norway, while 25% reported ‘never’ wearing a helmet. Thus, individuals appeared to consistently either use or not use helmets. Helmet wearing rates were generally higher when riding for health/fitness than other purposes and appeared to be little affected by the type of riding location, but some divergences in these patterns were found among countries. Almost 29% of respondents reported being involved in at least one bicycle crash in the last year (ranging from 12% in Israel to 53% in Turkey). Among the most severe crashes for each respondent, about half of the crashes involved falling off a bicycle. Just under 10% of the most severe crashes for each respondent were reported to police. Among the bicycle-motor vehicle crashes, only a third were reported to police. Further analyses will address questions regarding the influence of factors such as demographic characteristics, type of bicycle ridden, and attitudes on both bi-cycle use and helmet wearing rates.
Resumo:
Speed is recognised as a key contributor to crash likelihood and severity, and to road safety performance in general. Its fundamental role has been recognised by making Safe Speeds one of the four pillars of the Safe System. In this context, impact speeds above which humans are likely to sustain fatal injuries have been accepted as a reference in many Safe System infrastructure policy and planning discussions. To date, there have been no proposed relationships for impact speeds above which humans are likely to sustain fatal or serious (severe) injury, a more relevant Safe System measure. A research project on Safe System intersection design required a critical review of published literature on the relationship between impact speed and probability of injury. This has led to a number of questions being raised about the origins, accuracy and appropriateness of the currently accepted impact speed–fatality probability relationships (Wramborg 2005) in many policy documents. The literature review identified alternative, more recent and more precise relationships derived from the US crash reconstruction databases (NASS/CDS). The paper proposes for discussion a set of alternative relationships between vehicle impact speed and probability of MAIS3+ (fatal and serious) injury for selected common crash types. Proposed Safe System critical impact speed values are also proposed for use in road infrastructure assessment. The paper presents the methodology and assumptions used in developing these relationships. It identifies further research needed to confirm and refine these relationships. Such relationships would form valuable inputs into future road safety policies in Australia and New Zealand.
Sleep-related crash characteristics: Implications for applying a fatigue definition to crash reports
Resumo:
Sleep-related (SR) crashes are an endemic problem the world over. However, police officers report difficulties in identifying sleepiness as a crash contributing factor. One approach to improving the sensitivity of SR crash identification is by applying a proxy definition post hoc to crash reports. To identify the prominent characteristics of SR crashes and highlight the influence of proxy definitions, ten years of Queensland (Australia) police reports of crashes occurring in ≥100 km/h speed zones were analysed. In Queensland, two approaches are routinely taken to identifying SR crashes. First, attending police officers identify crash causal factors; one possible option is ‘fatigue/fell asleep’. Second, a proxy definition is applied to all crash reports. Those meeting the definition are considered SR and added to the police-reported SR crashes. Of the 65,204 vehicle operators involved in crashes 3449 were police-reported as SR. Analyses of these data found that male drivers aged 16–24 years within the first two years of unsupervised driving were most likely to have a SR crash. Collision with a stationary object was more likely in SR than in not-SR crashes. Using the proxy definition 9739 (14.9%) crashes were classified as SR. Using the proxy definition removes the findings that SR crashes are more likely to involve males and be of high severity. Additionally, proxy defined SR crashes are no less likely at intersections than not-SR crashes. When interpreting crash data it is important to understand the implications of SR identification because strategies aimed at reducing the road toll are informed by such data. Without the correct interpretation, funding could be misdirected. Improving sleepiness identification should be a priority in terms of both improvement to police and proxy reporting.
Resumo:
Curves are a common feature of road infrastructure; however crashes on road curves are associated with increased risk of injury and fatality to vehicle occupants. Countermeasures require the identification of contributing factors. However, current approaches to identifying contributors use traditional statistical methods and have not used self-reported narrative claim to identify factors related to the driver, vehicle and environment in a systemic way. Text mining of 3434 road-curve crash claim records filed between 1 January 2003 and 31 December 2005 at a major insurer in Queensland, Australia, was undertaken to identify risk levels and contributing factors. Rough set analysis was used on insurance claim narratives to identify significant contributing factors to crashes and their associated severity. New contributing factors unique to curve crashes were identified (e.g., tree, phone, over-steer) in addition to those previously identified via traditional statistical analysis of Police and licensing authority records. Text mining is a novel methodology to improve knowledge related to risk and contributing factors to road-curve crash severity. Future road-curve crash countermeasures should more fully consider the interrelationships between environment, the road, the driver and the vehicle, and education campaigns in particular could highlight the increased risk of crash on road-curves.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.
Resumo:
Multi-agent systems (MAS) advocate an agent-based approach to software engineering based on decomposing problems in terms of decentralized, autonomous agents that can engage in flexible, high-level interactions. This chapter introduces scalable fault tolerant agent grooming environment (SAGE), a second-generation Foundation for Intelligent Physical Agents (FIPA)-compliant multi-agent system developed at NIIT-Comtec, which provides an environment for creating distributed, intelligent, and autonomous entities that are encapsulated as agents. The chapter focuses on the highlight of SAGE, which is its decentralized fault-tolerant architecture that can be used to develop applications in a number of areas such as e-health, e-government, and e-science. In addition, SAGE architecture provides tools for runtime agent management, directory facilitation, monitoring, and editing messages exchange between agents. SAGE also provides a built-in mechanism to program agent behavior and their capabilities with the help of its autonomous agent architecture, which is the other major highlight of this chapter. The authors believe that the market for agent-based applications is growing rapidly, and SAGE can play a crucial role for future intelligent applications development. © 2007, IGI Global.