180 resultados para Articular Chondrocytes
Resumo:
This project developed a quantitative method for determining the quality of the surgical alignment of the bone fragments after an ankle fracture. The research examined the feasibility of utilising MRI-based bone models versus the gold standard CT-based bone models in order to reduce the amount of ionising radiation the patient is exposed to. In doing so, the thesis reports that there is potential for MRI to be used instead of CT depending on the scanning parameters used to obtain the medical images, the distance of the implant relative to the joint surface, and the implant material.
Resumo:
Introduction. The dimensions of the thoracic intervertebral foramen in adolescent idiopathic scoliosis (AIS) have not previously been quantified. During posterior approach scoliosis correction surgery pedicle screws may occasionally breach into the foramen. Better understanding of the dimensions of the foramen may be useful in surgical planning. This study describes a reproducible method for measurement of the thoracic foramen in AIS using computerized tomography (CT). Methods. In 23 pre-operative female patients with Lenke 1 type AIS with right side convexity major curves confined to the thoracic spine the foraminal height (FH), foraminal width (FW), pedicle to superior articular process distance (P-SAP) and cross sectional foraminal area (FA) were measured using multiplanar reconstructed CT. Measurements were made at entrance, midpoint and exit of the thoracic foramina from T1/T2 to T11/T12. Results were correlated with potential dependent variables of major curve Cobb Angle measured on X-ray and CT, Age, Weight, Lenke classification subtype, Risser Grade and number of spinal levels in the major curve. Results. The FH, FW, P-SAP and FA dimensions and ratios are all significantly larger on the convexity of the major curve and maximal at or close to the apex. Mean thoracic foraminal dimensions change in a predictable manner relative to position on the major thoracic curve. There was no significant correlation with the measured foraminal dimensions or ratios and the potential dependent variables. The average ratio of convexity to concavity dimensions at the apex foramina for entrance, midpoint and exit respectively are FH (1.50, 1.38, 1.25), FW (1.28, 1.30, 0.98), FA (2.06, 1.84, 1.32), P-SAP (1.61, 1.47, 1.30). Conclusion. Foraminal dimensions of the thoracic spine are significantly affected by AIS. Foraminal dimensions have a predictable convexity to concavity ratio relative to the proximity to the major curve apex. Surgeons should be aware of these anatomical differences during scoliosis correction surgery.
Resumo:
INTRODUCTION The dimensions of the thoracic intervertebral foramen in adolescent idiopathic scoliosis (AIS) have not previously been quantified. During posterior approach scoliosis correction surgery pedicle screws may occasionally breach into the foramen. Better understanding of the dimensions of the foramen may be useful in surgical planning. This study describes a reproducible method for measurement of the thoracic foramen in AIS using computerized tomography (CT). METHODS In 23 pre-operative female patients with Lenke 1 type AIS with right side convexity major curves confined to the thoracic spine the foraminal height (FH), foraminal width (FW), pedicle to superior articular process distance (P-SAP) and cross sectional foraminal area (FA) were measured using multiplanar reconstructed CT. Measurements were made at entrance, midpoint and exit of the thoracic foramina from T1/T2 to T11/T12. Results were correlated with potential dependent variables of major curve Cobb Angle measured on X-ray and CT, Age, Weight, Lenke classification subtype, Risser Grade and number of spinal levels in the major curve. RESULTS The FH, FW, P-SAP and FA dimensions and ratios are all significantly larger on the convexity of the major curve and maximal at or close to the apex. Mean thoracic foraminal dimensions change in a predictable manner relative to position on the major thoracic curve. There was no significant correlation with the measured foraminal dimensions or ratios and the potential dependent variables. The average ratio of convexity to concavity dimensions at the apex foramina for entrance, midpoint and exit respectively are FH (1.50, 1.38, 1.25), FW (1.28, 1.30, 0.98), FA (2.06, 1.84, 1.32), P-SAP (1.61, 1.47, 1.30). CONCLUSION Foraminal dimensions of the thoracic spine are significantly affected by AIS. Foraminal dimensions have a predictable convexity to concavity ratio relative to the proximity to the major curve apex. Surgeons should be aware of these anatomical differences during scoliosis correction surgery.
Resumo:
Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis.
Resumo:
We investigated the role of two genes, ANKH and TNAP, in patients with cuff tear arthropathy. These genes encode proteins which regulate the extracellular concentration of inorganic pyrophosphate, fluctuations of which can lead to calcium crystal formation. Variants were detected by direct sequencing of DNA and their frequencies compared with healthy controls. The effect of variants on protein function was further studied by in vitro approaches. Variant genotypes were observed more frequently in the cases when compared with controls in ANKH (45% and 20%) and TNAP (32% and 9%). Variants in ANKH altered inorganic pyrophosphate (PPi) concentrations in transfected human chondrocytes. There was a higher mean serum concentration of TNAP detected in female patients compared with normal ranges. Cuff tear arthropathy is associated with variants in ANKH and TNAP that alter extracellular inorganic pyrophosphate concentrations causing calcium crystal deposition. This supports a theory that genetic variants predispose patients to primary crystal deposition which when combined with a massive rotator cuff tear leads to the development of arthritis.
Resumo:
The availability of population-specific normative data regarding disease severity measures is essential for patient assessment. The goals of the current study were to characterize the pattern of ankylosing spondylitis (AS) in Portuguese patients and to develop reference centile charts for BASDAI, BASFI, BASMI and mSASSS, the most widely used assessment tools in AS. AS cases were recruited from hospital outpatient clinics, with AS defined according to the modified New York criteria. Demographic and clinical data were recorded. All radiographs were evaluated by two independent experienced readers. Centile charts for BASDAI, BASFI, BASMI and mSASSS were constructed for both genders, using generalized linear models and regression models with duration of disease as independent variable. A total of 369 patients (62.3% male, mean ± (SD) age 45.4 ± 13.2 years, mean ± (SD) disease duration 11.4 ± 10.5 years, 70.7% B27-positive) were included. Family history of AS in a first-degree relative was reported in 17.6% of the cases. Regarding clinical disease pattern, at the time of assessment 42.3% had axial disease, 2.4% peripheral disease, 40.9% mixed disease and 7.1% isolated enthesopatic disease. Anterior uveitis (33.6%) was the most common extra-articular manifestation. The centile charts suggest that females reported greater disease activity and more functional impairment than males but had lower BASMI and mSASSS scores. Data collected through this study provided a demographic and clinical profile of patients with AS in Portugal. The development of centile charts constitutes a useful tool to assess the change of disease pattern over time and in response to therapeutic interventions.
Resumo:
There is a need for materials that are well suited for cartilage tissue engineering. Hydrogels have emerged as promising biomaterials for cartilage repair, since, like cartilage, they have high water content, and they allow cells to be encapsulated within the material in a genuinely three-dimensional microenvironment. In this study, we investigated the mechanical properties of tissue-engineered cartilage constructs using in vitro culture models incorporating human chondrocytes from osteoarthritis patients. We evaluated hydrogels formed from mixtures of photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater extent 8 weeks of culture, HA-MA had striking and concentration dependent impact on the changes in mechanical properties. For example, the initial compressive moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa, respectively. After 8 weeks of culture, the moduli of these constructs had increased to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure strength and failure strain were all improved in constructs containing HA-MA. Differences in mechanical properties did not correlate with glycosaminoglycan content, which did not vary greatly between groups, yet there were clear differences in aggrecan intensity and distribution as assessed using immunostaining. Based on the functional development with time in culture using human chondrocytes, mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-engineering applications.
Resumo:
This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband's DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband's father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband's father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband's father.
Resumo:
Progeny of mice treated with the mutagen N-ethyl-N-nitrosourea (ENU) revealed a mouse, designated Longpockets (Lpk), with short humeri, abnormal vertebrae, and disorganized growth plates, features consistent with spondyloepiphyseal dysplasia congenita (SEDC). The Lpk phenotype was inherited as an autosomal dominant trait. Lpk/+ mice were viable and fertile and Lpk/Lpk mice died perinatally. Lpk was mapped to chromosome 15 and mutational analysis of likely candidates from the interval revealed a Col2a1 missense Ser1386Pro mutation. Transient transfection of wild-type and Ser1386Pro mutant Col2a1 c-Myc constructs in COS-7 cells and CH8 chondrocytes demonstrated abnormal processing and endoplasmic reticulum retention of the mutant protein. Histology revealed growth plate disorganization in 14-day-old Lpk/+ mice and embryonic cartilage from Lpk/+ and Lpk/Lpk mice had reduced safranin-O and type-II collagen staining in the extracellular matrix. The wild-type and Lpk/+ embryos had vertical columns of proliferating chondrocytes, whereas those in Lpk/Lpk mice were perpendicular to the direction of bone growth. Electron microscopy of cartilage from 18.5 dpc wild-type, Lpk/+, and Lpk/Lpk embryos revealed fewer and less elaborate collagen fibrils in the mutants, with enlarged vacuoles in the endoplasmic reticulum that contained amorphous inclusions. Micro-computed tomography (CT) scans of 12-week-old Lpk/+ mice revealed them to have decreased bone mineral density, and total bone volume, with erosions and osteophytes at the joints. Thus, an ENU mouse model with a Ser1386Pro mutation of the Col2a1 C-propeptide domain that results in abnormal collagen processing and phenotypic features consistent with SEDC and secondary osteoarthritis has been established.
Resumo:
Familial articular chondrocalcinosis (CC) was Wrst reported in 1963. It is characterised by multiple calciWcations of hyaline and Wbrous cartilage in the joints and intervertebral discs. Mutations in ANKH have been identified in several pedigrees as a monogenic cause for this disorder. ANKH is a key protein in pyrophosphate metabolism and is involved in pyrophosphate transport across the cell membrane. The objective of this work was to screen ANKH and ENPP1, two key genes in pyrophosphate metabolism, in Slovakian kindreds with familial CC. DNA samples from 25 individuals (10 aVected, 15 unaVected) from 8 families were obtained. The promoter, coding regions and intron-exon boundaries of ANKH and ENPP1 were sequenced. Twelve DNA sequence variants, six in each gene, were identiWed. All the variants had been previously identified. None segregated with the disease. Our results suggest that neither ANKH nor ENPP1 mutations are the cause of CC in these families, indicating that possibly other major genes are involved in the aethiopathogenesis of this condition in these families.
Resumo:
In summary, although many factors are likely to be involved in regulating calcification and ossification processes, studies of the causation of articular chondrocalcinosis and disorders of spinal ossification, such as DISH and OPLL, implicate control over inorganic pyrophosphate levels as being one of the most important factors in their aetiopathogenesis. The findings of these studies may prove relevant to other rheumatic diseases in which ectopic ossification occurs, such as AS.
Resumo:
This thesis explores the feasibility of donor-receiver concept for joint replacement where cartilage-bone tissues can be taken from either human or other mammals and prepared scientifically for repairing focal joint defects in knees, hips and shoulders. The manufactured construct is immunologically inert and is capable of acting as a scaffold for engineering new cartilage-bone laminates when placed in the joint. Innovative manufacturing procedures and assessment techniques were developed for appraising this tissue-based scaffold. This research has demonstrated that tissue replacement technology can be applied in situations where blood vessels are absent such as in articular cartilage.
Resumo:
Gene-targeted disruption of Grg5, a mouse homologue of Drosophila groucho (gro), results in postnatal growth retardation in mice. The growth defect, most striking in approximately half of the Grg5 null mice, occurs during the first 4-5 weeks of age, but most mice recover retarded growth later. We used the nonlinear mixed-effects model to fit the growth data of wild-type, heterozygous, and Grg5 null mice. On the basis of preliminary evidence suggesting an interaction between Grg5 and the transcription factor Cbfa1/Runx2, critical for skeletal development, we further investigated the skeleton in the mice. A long bone growth plate defect was identified, which included shorter zones of proliferative and hypertrophic chondrocytes and decreased trabecular bone formation. This decreased trabecular bone formation is likely caused by a reduced recruitment of osteoblasts into the growth plate region of Grg5 null mice. Like the growth defect, the growth plate and trabecular bone abnormality improved as the mice grew older. The growth plate defect was associated with reduced Indian hedgehog expression and signaling. We suggest that Grg5, a transcriptional coregulator, modulates the activities of transcription factors, such as Cbfa1/Runx2 in vivo to affect Ihh expression and the function of long bone growth plates.
Resumo:
This thesis introduces a new animal model, kangaroo, to biomechanical investigations of shoulder cartilage research. It examines the effect of cartilage structure and constituents on tissue behavior and its adaptation to mechanical loading. In doing so, the study explains the relationship of tissue's functional behaviors to its structure and constituents which has important implications for tissue engineering strategies catering joint specific cartilage tissue generation.
Resumo:
It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.