536 resultados para American Oriental Society.
Resumo:
The World Health Organization recommends that the majority of water monitoring laboratories in the world should test for E. coli daily since thermotolerant coliforms and E. coli are key indicators for risk assessment of recreational waters. Recently, we developed a new SNP method for typing E. coli strains, by which human-specific genotypes were identified. Here, we report the presence of these previously described specific SNP profiles in environmental water, sourced from the Coomera River, located on South East Queensland, Australia, over a period of two years. This study tested for the presence of human-specific E. coli to ascertain whether hydrologic and anthropogenic activity plays a key role in the pollution of the investigated watershed or whether the pollution is from other sources. We found six human-specific SNP profiles and one animal-specific SNP profile consistently across sampling sites and times. We have demonstrated that our SNP genotyping method is able to rapidly identify and characterise human- and animal-specific E. coli isolates in water sources.
Resumo:
Velocity jump processes are discrete random walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity jump models are often used to represent a type of persistent motion, known as a “run and tumble”, which is exhibited by some isolated bacteria cells. All previous velocity jump processes are non-interacting, which means that crowding effects and agent-to-agent interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity jump models are only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology, such as wound healing, cancer invasion and development, often involve tissues that are densely packed with cells where cell-to-cell contact and crowding effects can be important. To describe these kinds of high cell density problems using a velocity jump process we introduce three different classes of crowding interactions into a one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of the interacting velocity jump processes. We show that the resulting systems of hyperbolic partial differential equations predict the mean behavior of the stochastic simulations very well.
Resumo:
Objective: The purpose of this study was to address (1) the existence of an association between menopausal status and the health-related quality of life (HRQOL) in Australian and Japanese women and (2) the relative contributions of menopausal status, modifiable lifestyle risk factors, health, and sociodemographic factors on HRQOL. Design: The Australian and Japanese Midlife Women's Health Study (AJMWHS) was a multisite, population-based study conducted in 2001 to 2002. Measures were conducted on data collected from a survey questionnaire used for a sample of women from Australia and Japan. HRQOL was assessed with seven subscales from the Short Form-36. Results: The differences seen in physical functioning, general health, and vitality are significant. The results support an effect of country of residence on physical functioning and general health. The impact of menopausal status on HRQOL was significantly associated with bodily pain and role-emotional. The country of residence did have a modifying effect on the relationship between menopausal status and physical functioning. After control for confounders, there was a significant difference between Australian and Japanese women for HRQOL. Menopausal status was not associated with HRQOL in the areas of general health and physical functioning. Modifiable lifestyle risk factors contributed more highly to HRQOL for the Australian women than for the Japanese women. If the women had a lowered body mass index, undertook physical activity, consumed dietary phytoestrogens, and used alcohol, their physical functioning seemed to be better. Differences were seen in the contributions to HRQOL in these areas, with lower body mass index in the Australian women and physical activity in the Japanese women being the highest predictors. Somatic and psychological symptoms seem to negatively affect both Japanese and Australian women's physical functioning, contributing more than sociodemographic factors, menopausal status, and behavioral determinants combined to general health and physical functioning. Conclusions: It is important that that consideration be given to incorporating the same tool within the cross-cultural design of studies so that comparisons between cultures and patterns of healthy aging can be made. The research suggests that there seems to be variations across Australian and Japanese midlife women in some areas of HRQOL and some factors that contribute to these areas.
Resumo:
OBJECTIVES: To identify the prevalence of geriatric syndromes in the premorbid for all syndromes except falls (preadmission), admission, and discharge assessment periods and the incidence of new and significant worsening of existing syndromes at admission and discharge. DESIGN: Prospective cohort study. SETTING: Three acute care hospitals in Brisbane, Australia. PARTICIPANTS: Five hundred seventy-seven general medical patients aged 70 and older admitted to the hospital. MEASUREMENTS: Prevalence of syndromes in the premorbid (or preadmission for falls), admission, and discharge periods; incidence of new syndromes at admission and discharge; and significant worsening of existing syndromes at admission and discharge. RESULTS: The most frequently reported premorbid syndromes were bladder incontinence (44%), impairment in any activity of daily living (ADL) (42%). A high proportion (42%) experienced at least one fall in the 90 days before admission. Two-thirds of the participants experienced between one and five syndromes (cognitive impairment, dependence in any ADL item, bladder and bowel incontinence, pressure ulcer) before, at admission, and at discharge. A majority experienced one or two syndromes during the premorbid (49.4%), admission (57.0%), or discharge (49.0%) assessment period.The syndromes with a higher incidence of significant worsening at discharge (out of the proportion with the syndrome present premorbidly) were ADL limitation (33%), cognitive impairment (9%), and bladder incontinence (8%). Of the syndromes examined at discharge, a higher proportion of patients experienced the following new syndromes at discharge (absent premorbidly): ADL limitation (22%); and bladder incontinence (13%). CONCLUSION: Geriatric syndromes were highly prevalent. Many patients did not return to their premorbid function and acquired new syndromes.
Resumo:
Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilising a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that, while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100ºC and 250ºC, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilisation began at around 40°C with the majority occurring by 80°C. Particles produced during hard acceleration from rest exhibited lower volatility than that produced during other times of the cycle. Based on our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these non-volatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100ºC removed ultrafine particle numbers by 69% to 82% when a nucleation mode was present and just 18% when it was not.
Resumo:
This study undertook a physico-chemical characterisation of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e. soy, tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM10). The chemical properties of particulates were investigated by measuring particle and vapour phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, whilst others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapour phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage, but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles – a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.
Resumo:
The single crystal Raman spectra of natural mineral paulmooreite Pb2As2O5 from the Långban locality, Filipstad district, Värmland province, Sweden are presented for the first time. It is a monoclinic mineral containing an isolated [As2O5]4-. Depolarised and single crystal spectra of the natural and synthetic sample compare favorably and are characterized by strong bands around 186 and 140 cm-1 and three medium bands at 800 – 700 cm-1. Band assignments were made based on band symmetry and spectral comparison between experimental band positions and those resulting from Hartree-Fock calculation of an isolated [As2O5]4- ion. Spectral comparison was also made with lead arsenites such as synthetic PbAs2O4 and Pb2(AsO2)3Cl and natural finnemanite in order to determine the contribution of the terminal and bridging O in paulmooreite. Bands at 760 – 733 cm-1 were assigned to terminal As-O vibrations, whereas stretches of the bridging O occur at 562 and 503 cm-1. The single crystal spectra showed good mode separation, allowing bands to be assigned a symmetry species of Ag or Bg.
Resumo:
The preparation of a series of nickel dichloride complexes with bulky diphosphinomethane chelate ligands R2PCH2PR′2 is reported. Reaction with the appropriate Grignard reagent leads to the corresponding dimethyl and dibenzyl complexes. Cationic monomethyl and mono-η3-benzyl complexes are generated from these dialkyl complexes by protonation with [H(OEt2)2]+[B(3,5-(CF3)2C6H3)4]−, while the complex [(dtbpm κ2P)Ni(η3-CH(CH2Ph)Ph]+[B(3,5-(CF3)2C6H3)4]−is obtained from protonation of the Ni(0) olefin complex (dtbpm-κ2P)N(η2-trans-stilbene). Crystal structures of examples of dichlorides, dimethyl, dibenzyl, cationic methyl, and cationic η3-benzyl complexes are reported. Solutions of the cations polymerize ethylene under mild conditions and without the necessity of an activating agent, to form polyethylene having high molecular weights and low degrees of chain branching. In comparison to the Ni methyl cations, the η3-benzyl cation complexes are more stable and somewhat less active but still very efficient in C2H4 polymerization. The effect on the resulting polyethylene of varying the substituents R, R′ on the phosphine ligand has been examined, and a clear trend for longer chain PE with less branching in the presence of more bulky substituents on the diphosphine has been found. Density functional calculations have been used to examine the rapid suprafacial η3 to η3 haptotropic shift processes of the[(R2PCH2PR′2)Ni] fragment and the η3−η1 change of the coordination mode of the benzyl group required for polymerization in those cations.
Resumo:
Vacuuming can be a source of indoor exposure to biological and non-biological aerosols, although there is little data that describes the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price and age. Emissions of particles between 0.009 and 20 µm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10^6 to 1.1 × 10^11 particles min-1. Emission of 0.54 to 20 µm particles ranged from 4.0 × 10^4 to 1.2 × 10^9 particles min-1. PM2.5 emissions were between 2.4 × 10-1 and 5.4 × 10^3 µg min-1. Bacteria emissions ranged from 0 to 7.4 × 10^5 bacteria min-1 and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums we assessed, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to non-biological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.
Resumo:
The main constituents of red mud produced in Aluminio city (S.P. – Brazil) are iron, aluminium and silicon oxides. It has been determined that the average particle diameter for this red mud is between 0.05 and 0.002mm. It is observed that a decrease in the percentage of smaller particles occurs at temperatures greater than 400°C. This observation corresponds with the thermal analysis and X-ray diffraction (XRD) data, which illustrate the phase transition of goethite to hematite. A 10% mass loss is observed in the thermal analysis patterns due to the hydroxide – oxide phase transitions of iron (primary phase transition) and aluminium (to a lesser extent). The disappearance and appearance of the different phases of iron and aluminium confirms the decomposition reactions proposed by the thermal analysis data. This Brazilian red mud has been classified as mesoporous at all temperatures except between 400 and 500°C where the classification changes to micro/mesoporous.
Resumo:
Background: The current model of care for breast cancer is focused on disease treatment followed by ongoing recurrence surveillance. This approach lacks attention to the patients’ physical and functional well-being. Breast cancer treatment sequelae can lead to physical impairments and functional limitations. Common impairments include pain, fatigue, upper extremity dysfunction, lymphedema, weakness, joint arthralgia, neuropathy, weight gain, cardiovascular effects, and osteoporosis. Evidence supports prospective surveillance for early identification and treatment as a means to prevent or mitigate many of these concerns. Purpose: This paper proposes a prospective surveillance model for physical rehabilitation and exercise that can be integrated with disease treatment to create a more comprehensive approach to survivorship health care. The goals of the model are to promote surveillance for common physical impairments and functional limitations associated with breast cancer treatment, to provide education to facilitate early identification of impairments, to introduce rehabilitation and exercise intervention when physical impairments are identified and to promote and support physical activity and exercise behaviors through the trajectory of disease treatment and survivorship. Methods: The model is the result of a multi-disciplinary meeting of research and clinical experts in breast cancer survivorship and representatives of relevant professional and advocacy organizations. Outcomes: The proposed model identifies time points during breast cancer care for assessment of and education about physical impairments. Ultimately, implementation of the model may influence incidence and severity of breast cancer treatment related physical impairments. As such, the model seeks to optimize function during and following treatment and positively influence a growing survivorship community.
Resumo:
The paper presents the results of a study conducted to investigate indoor air quality within residential dwellings in Lao PDR. Results from PM 10, CO, and NO2 measurements inside 167 dwellings in Lao PDR over a five month period (December 2005-April 2006) are discussed as a function of household characteristics and occupant activities. Extremely high PM10 and NO2 concentrations (12 h mean PM10 concentrations 1275 ± 98 μg m-3 and 1183 ± 99 μg m-3 in Vientiane and Bolikhamxay provinces, respectively; 12 h mean NO2 concentrations 1210 ± 94 μg m-3 and 561 ± 45 μg m-3 in Vientiane and Bolikhamxay, respectively) were measured within the dwellings. Correlations, ANOVA analysis (univariate and multivariate), and linear regression results suggest a substantial contribution from cookingandsmoking.The PM10 concentrations were significantly higher in houses without a chimney compared to houses in which cooking occurred on a stove with a chimney. However, no significant differences in pollutantconcentrations were observed as a function of cooking location. Furthermore, PM10 and NO2 concentrations were higher in houses in which smoking occurred, suggestive of a relationship between increased indoor concentrations and smoking (0.05 < p < 0.10). Resuspension of dust from soil floors was another significant source of PM10 inside the house (634 μg m-3, p < 0.05).
Resumo:
A series of one dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into butanol solution. The materials were calcined at 773K and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), N2 adsorption/desorption, infrared emission spectroscopy (IES). The results demonstrated that when the molar percentage X=100*Zr/(Al+Zr) was > 30 %, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals on the surface were formed. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific technologies. The mechanism for the formation of long ZrO2/Al2O3 composite nanorods was proposed in this work.
Resumo:
A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.
Resumo:
The concept of local accumulation time (LAT) was introduced by Berezhkovskii and coworkers in 2010–2011 to give a finite measure of the time required for the transient solution of a reaction–diffusion equation to approach the steady–state solution (Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb in 1991 (IMA J Appl Math. 47, 193 (1991)). Although McNabb’s initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one–dimensional linear advection–diffusion–reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform–to-uniform transitions; these results provide a practical interpretation for MAT, by directly linking the stochastic microscopic processes to a meaningful macroscopic timescale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using the MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.