178 resultados para Aerodynamic Particle Sizer (APS 3321)
Resumo:
The Lagrangian particle tracking provides an effective method for simulating the deposition of nano- particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. The aim of this paper is to study the deposition of nano-particles in cylindrical tubes under laminar condition using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different pipe lengths and flow rates are examined. The results show good agreement between the calculated deposition efficiency and different analytic correlations in the literature. Furthermore, for the nano-particles with higher diameters and when the effect of inertia has a higher importance, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
In this study we present a combinatorial optimization method based on particle swarm optimization and local search algorithm on the multi-robot search system. Under this method, in order to create a balance between exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between target and the robot become less than specific measure then a local search algorithm is performed. The local search encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet the challenges of robotic applications that can be described as optimization problems.
Resumo:
Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.
Resumo:
Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
Any kind of imbalance in the operation of a wind turbine has adverse effect on the downstream torsional components as well as tower structure. It is crucial to detect imbalance at its very inception. The identification of the type of imbalance is also required so that appropriate measures of fault accommodation can be performed in the control system. In particular, it is important to distinguish between mass and aerodynamic imbalance. While the former is gradually caused by a structural anomaly (e.g. ice deposition, moisture accumulation inside blade), the latter is generally associated to a fault in the pitch control system. This paper proposes a technique for the detection and identification of imbalance fault in large scale wind turbines. Unlike most other existing method it requires only the rotor speed signal which is readily available in existing turbines. Signature frequencies have been proposed in this work to identify imbalance type based on their physical phenomenology. The performance of this technique has been evaluated by simulations using an existing benchmark model. The effectiveness of the proposed method has been confirmed by the simulation results.
Resumo:
Particle analysis methodology is presented, together with the morphology of the wear debris formed during rolling contact fatigue. Wear particles are characterised by their surface topography and in terms of wear mechanism. Rail-wheel materials are subjected to severe plastic deformation as the contact loading progresses, which contributes to a mechanism of major damage in head-hardened rail steel. Most of the current methodologies involve sectioning of the rail-wheel discs to trace material damage phenomena such as crack propagation and plastic strain accumulation. This paper proposes methodology to analyse the development of the plastically deformed layer by sectioning wear particles using the focussed ion beam (FIB) milling method. Moreover, it highlights the processes of oxidation and rail surface delamination during unlubricated rolling contact fatigue.
Resumo:
Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1–December 21) in 2010 with the same calendar date of baseline years (2006–2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73–0.86), 0.77 (95% CI: 0.66–0.89) and 0.68 (95% CI: 0.57–0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.
Resumo:
Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed.
Resumo:
Biodiesels produced from different feedstocks usually have wide variations in their fatty acid methyl ester (FAME) so that their physical properties and chemical composition are also different. The aim of this study is to investigate the effect of the physical properties and chemical composition of biodiesels on engine exhaust particle emissions. Alongside with neat diesel, four biodiesels with variations in carbon chain length and degree of unsaturation have been used at three blending ratios (B100, B50, B20) in a common rail engine. It is found that particle emission increased with the increase of carbon chain length. However, for similar carbon chain length, particle emissions from biodiesel having relatively high average unsaturation are found to be slightly less than that of low average unsaturation. Particle size is also found to be dependent on fuel type. The fuel or fuel mix responsible for higher particle mass (PM) and particle number (PN) emissions is also found responsible for larger particle median size. Particle emissions reduced consistently with fuel oxygen content regardless of the proportion of biodiesel in the blends, whereas it increased with fuel viscosity and surface tension only for higher diesel–biodiesel blend percentages (B100, B50). However, since fuel oxygen content increases with the decreasing carbon chain length, it is not clear which of these factors drives the lower particle emission. Overall, it is evident from the results presented here that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions.
Resumo:
This project provides a steppingstone to comprehend the mechanisms that govern particulate fouling in metal foam heat exchangers. The method is based on development of an advanced Computational Fluid Dynamics model in addition to performing analytical validation. This novel method allows an engineer to better optimize heat exchanger designs, thereby mitigating fouling, reducing energy consumption caused by fouling, economize capital expenditure on heat exchanger maintenance, and reduce operation downtime. The robust model leads to the establishment of an alternative heat exchanger configuration that has lower pressure drop and particulate deposition propensity.
Resumo:
Rail track undergoes complex loading patterns under moving traffic conditions compared to roads due to its continued and discontinued multi-layered structure, including rail, sleepers, ballast layer, sub-ballast layer, and subgrade. Particle size distributions (PSDs) of ballast, subballast, and subgrade layers can be critical in cyclic plastic deformation of rail track under moving traffic on frequent track degradation of rail tracks, especially at bridge transition zones. Conventional test approaches: static shear and cyclic single-point load tests are however unable to replicate actual loading patterns of moving train. Multi-ring shear apparatus; a new type of torsional simple shear apparatus, which can reproduce moving traffic conditions, was used in this study to investigate influence of particle size distribution of rail track layers on cyclic plastic deformation. Three particle size distributions, using glass beads were examined under different loading patterns: cyclic sin-gle-point load, and cyclic moving wheel load to evaluate cyclic plastic deformation of rail track under different loading methods. The results of these tests suggest that particle size distributions of rail track structural layers have significant impacts on cyclic plastic deformation under moving train load. Further, the limitations in con-ventional test methods used in laboratories to estimate the plastic deformation of rail track materials lead to underestimate the plastic deformation of rail tracks.
Resumo:
It is well-known that new particle formation (NPF) in the atmosphere is inhibited by pre-existing particles in the air that act as condensation sinks to decrease the concentration and, thus, the supersaturation of precursor gases. In this study, we investigate the effects of two parameters - atmospheric visibility, expressed as the particle back-scatter coefficient (BSP), and PM10 particulate mass concentration, on the occurrences of NPF events in an urban environment where the majority of precursor gases originate from motor vehicle and industrial sources. This is the first attempt to derive direct relationships between each of these two parameters and the occurrence of NPF. NPF events were identified from data obtained with a neutral cluster and air ion spectrometer over 245 days within a calendar year. Bayesian logistic regression was used to determine the probability of observing NPF as functions of BSP and PM10. We show that the BSP at 08 h on a given day is a reliable indicator of an NPF event later that day. The posterior median probability of observing an NPF event was greater than 0.5 (95%) when the BSP at 08 h was less than 6.8 Mm-1.
Resumo:
In this paper, we examine approaches to estimate a Bayesian mixture model at both single and multiple time points for a sample of actual and simulated aerosol particle size distribution (PSD) data. For estimation of a mixture model at a single time point, we use Reversible Jump Markov Chain Monte Carlo (RJMCMC) to estimate mixture model parameters including the number of components which is assumed to be unknown. We compare the results of this approach to a commonly used estimation method in the aerosol physics literature. As PSD data is often measured over time, often at small time intervals, we also examine the use of an informative prior for estimation of the mixture parameters which takes into account the correlated nature of the parameters. The Bayesian mixture model offers a promising approach, providing advantages both in estimation and inference.