285 resultados para Adaptive control charts
Resumo:
This paper examines the vibration characteristics and vibration control of complex ship structures. It is shown that input mobilities of a ship structure at engine supports, due to out-of-plane force or bending moment excitations, are governed by the flexural stiffness of the engine supports. The frequency averaged input mobilities of the ship structure, due to such excitations, can be represented by those of the corresponding infinite beam. The torsional moment input mobility at the engine support can be estimated from the torsional response of the engine bed section under direct excitation. It is found that the inclusion of ship hull and deck plates in the ship structure model has little effect on the frequency-averaged response of the ship structure. This study also shows that vibration propagation in complex ship structures at low frequencies can be attenuated by imposing irregularities to the ring frame locations in ships. Vibration responses of ship structures due to machinery excitations at higher frequencies can be controlled by structural modifications of the local supporting structures such as engine beds in ships.
Resumo:
We present a method for topological SLAM that specifically targets loop closing for edge-ordered graphs. Instead of using a heuristic approach to accept or reject loop closing, we propose a probabilistically grounded multi-hypothesis technique that relies on the incremental construction of a map/state hypothesis tree. Loop closing is introduced automatically within the tree expansion, and likely hypotheses are chosen based on their posterior probability after a sequence of sensor measurements. Careful pruning of the hypothesis tree keeps the growing number of hypotheses under control and a recursive formulation reduces storage and computational costs. Experiments are used to validate the approach.
Resumo:
This paper represents my attempt to turn the gaze and demonstrate how Indigenous Studies is controlled in some Australian universities in ways that witness Indigenous peoples being further marginalised, denigrated and exploited. I have endeavoured to do this through sharing an experience as a case study. I have opted to write about it as a way of exposing the problematic nature of racism, systemic marginalisation, white race privilege and radicalised subjectivity played out within an Australian higher education institution and because I am dissatisfied with the on-going status quo. In bringing forth analysis to this case study, I reveal the relationships between oppression, white race privilege and institutional privilege and the epistemology that maintains them. In moving from the position of being silent on this experience to speaking about it, I am able to move from the position of object to subject and to gain a form of liberated voice (hooks 1989:9). Furthermore, I am hopeful that it will encourage others to examine their own practices within universities and to challenge the domination that continues to subjugate Indigenous peoples.
Resumo:
Objective: To examine the impact on dental utilisation following the introduction of a participating provider scheme (Regional and Rural Oral Health Program {RROHP)). In this model dentists receive higher third party payments from a private health insurance fund for delivering an agreed range of preventive and diagnostic benefits at no out-ofpocket cost to insured patients. Data source/Study setting: Hospitals Contribution Fund of Australia (HCF) dental claims for all members resident in New South Wales over the six financial years from l99811999 to 200312004. Study design: This cohort study involves before and after analyses of dental claims experience over a six year period for approximately 81,000 individuals in the intervention group (HCF members resident in regional and rural New South Wales, Australia) and 267,000 in the control group (HCF members resident in the Sydney area). Only claims for individuals who were members of HCF at 31 December 1997 were included. The analysis groups claims into the three years prior to the establishment of the RROHP and the three years subsequent to implementation. Data collection/Extraction methods: The analysis is based on all claims submitted by users of services for visits between 1 July 1988 and 30 June 2004. In these data approximately 1,000,000 services were provided to the intervention group and approximately 4,900,000 in the control group. Principal findings: Using Statistical Process Control (SPC) charts, special cause variation was identified in total utilisation rate of private dental services in the intervention group post implementation. No such variation was present in the control group. On average in the three years after implementation of the program the utilisation rate of dental services by regional and rural residents of New South Wales who where members of HCF grew by 12.6%, over eight times the growth rate of 1.5% observed in the control group (HCF members who were Sydney residents). The differences were even more pronounced in the areas of service that were the focus of the program: diagnostic and preventive services. Conclusion: The implementation of a benefit design change, a participating provider scheme, that involved the removal of CO-payments on a defined range of preventive and diagnostic dental services combined with the establishment and promotion of a network of dentists, appears to have had a marked impact on HCF members' utilisation of dental services in regional and rural New South Wales, Australia.
Resumo:
Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.
Resumo:
Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.
Resumo:
For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.
Resumo:
Changes in the environment, including increased environmental complexity, require military supply units to employ a more adaptive strategy in order to enhance military agility. We extend the Lumpkin and Dess (1996) model and develop propositions that explore the interrelationships between/amongst entrepreneurial orientation (EO); opportunity recognition, evaluation and exploitation; environmental and organizational factors; and organizational performance. We propose that the innovativeness, proactiveness, and risk-taking dimensions of EO are of primary importance in identifying adaptive solutions and that these relationships are moderated by environmental factors. The autonomy and competitive aggressiveness dimensions of EO are important in implementing solutions as adaptive strategies, especially in a military context, and these relationships are moderated by organizational factors. This chapter extends existing theory developed primarily for the civilian sector to the military. Military organizations are more rigid hierarchical structures, and have different measures of performance. At an applied level, this research provides insights for military commanders that can potentially enhance agility and adaptability.
Resumo:
Engineering assets such as roads, rail, bridges and other forms of public works are vital to the effective functioning of societies {Herder, 2006 #128}. Proficient provision of this physical infrastructure is therefore one of the key activities of government {Lædre, 2006 #123}. In order to ensure engineering assets are procured and maintained on behalf of citizens, government needs to devise the appropriate policy and institutional architecture for this purpose. The changing institutional arrangements around the procurement of engineering assets are the focus of this paper. The paper describes and analyses the transition to new, more collaborative forms of procurement arrangements which are becoming increasingly prevalent in Australia and other OECD countries. Such fundamental shifts from competitive to more collaborative approaches to project governance can be viewed as a major transition in procurement system arrangements. In many ways such changes mirror the shift from New Public Management, with its emphasis on the use of market mechanisms to achieve efficiencies {Hood, 1991 #166}, towards more collaborative approaches to service delivery, such as those under network governance arrangements {Keast, 2007 #925}. However, just as traditional forms of procurement in a market context resulted in unexpected outcomes for industry, such as a fragmented industry afflicted by chronic litigation {Dubois, 2002 #9}, the change to more collaborative forms of procurement is unlikely to be a panacea to the problems of procurement, and may well also have unintended consequences. This paper argues that perspectives from complex adaptive systems (CAS) theory can contribute to the theory and practice of managing system transitions. In particular the concept of emergence provides a key theoretical construct to understand the aggregate effect that individual project governance arrangements can have upon the structure of specific industries, which in turn impact individual projects. Emergence is understood here as the macro structure that emerges out of the interaction of agents in the system {Holland, 1998 #100; Tang, 2006 #51}.
Resumo:
In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.
Resumo:
This paper describes the operation of a microgrid that contains a custom power park (CPP). The park may contain an unbalanced and/or nonlinear load and the microgrid may contain many dis-tributed generators (DGs). One of the DGs in the microgrid is used as a compensator to achieve load compensation. A new method is proposed for current reference generation for load compensation, which takes into account the real and reactive power to be supplied by the DG connected to the compensator. The real and reactive power from the DGs and the utility source is tightly regulated assuming that dedicated communication channels are available. Therefore this scheme is most suitable in cases where the loads in CPP and DGs are physically located close to each other. The proposal is validated through extensive simulation studies using EMTDC/PSCAD software package (version 4.2).
Resumo:
In this paper, a new power sharing control method for a microgrid with several distributed generation units is proposed. The presence of both inertial and noninertial sources with different power ratings, maximum power point tracking, and various types of loads pose a great challenge for the power sharing and system stability. The conventional droop control method is modified to achieve the desired power sharing ensuring system stability in a highly resistive network. A transformation matrix is formed to derive equivalent real and reactive power output of the converter and equivalent feedback gain matrix for the modified droop equation. The proposed control strategy, aimed for the prototype microgrid planned at Queensland University of Technology, is validated through extensive simulation results using PSCAD/EMTDC software.
Resumo:
The objective of the present study was to predict the economic consequences of healthcare-acquired infections arising among admissions to Australian acute care hospitals. A quantitative algorithm informed by epidemiological and economic data was developed. All acute care hospitals in Australia were included in the study and the participants included all admissions to general medical and general surgical specialties. The main outcome measures were the numbers of cases of healthcare-acquired infection and bed days lost annually. It was estimated that there are 175 153 (95% credible interval 155 911 : 195 168) cases of healthcare-acquired infection among admissions to Australian hospitals annually, and the extra stay in hospital to treat symptoms accounts for 854 289 bed days (95% credible interval 645 091 : 1 096 244). If rates were reduced by 1%, then 150 158 bed days would be released for alternative uses. This would allow ~38 500 new admissions. Healthcare-acquired infections in patients cause bed blocks in Australian hospitals. The cost-effectiveness of hospital services might be improved by allocating more resources to infection control, releasing beds and allowing new admissions. There exists an opportunity to improve the efficiency of the Australian health care system.
Resumo:
The automation of various aspects of air traffic management has many wide-reaching benefits including: reducing the workload for Air Traffic Controllers; increasing the flexibility of operations (both civil and military) within the airspace system through facilitating automated dynamic changes to en-route flight plans; ensuring safe aircraft separation for a complex mix of airspace users within a highly complex and dynamic airspace management system architecture. These benefits accumulate to increase the efficiency and flexibility of airspace use(1). Such functions are critical for the anticipated increase in volume of manned and unmanned aircraft traffic. One significant challenge facing the advancement of airspace automation lies in convincing air traffic regulatory authorities that the level of safety achievable through the use of automation concepts is comparable to, or exceeds, the accepted safety performance of the current system.
Resumo:
Decentralized and regional load-frequency control of power systems operating in normal and near-normal conditions has been well studied; and several analysis/synthesis approaches have been developed during the last few decades. However in contingency and off-normal conditions, the existing emergency control plans, such as under-frequency load shedding, are usually applied in a centralized structure using a different analysis model. This paper discusses the feasibility of using frequency-based emergency control schemes based on tie-line measurements and local information available within a control area. The conventional load-frequency control model is generalized by considering the dynamics of emergency control/protection schemes and an analytic approach to analyze the regional frequency response under normal and emergency conditions is presented.