208 resultados para 770103 Weather
Resumo:
This paper is about localising across extreme lighting and weather conditions. We depart from the traditional point-feature-based approach as matching under dramatic appearance changes is a brittle and hard thing. Point feature detectors are fixed and rigid procedures which pass over an image examining small, low-level structure such as corners or blobs. They apply the same criteria applied all images of all places. This paper takes a contrary view and asks what is possible if instead we learn a bespoke detector for every place. Our localisation task then turns into curating a large bank of spatially indexed detectors and we show that this yields vastly superior performance in terms of robustness in exchange for a reduced but tolerable metric precision. We present an unsupervised system that produces broad-region detectors for distinctive visual elements, called scene signatures, which can be associated across almost all appearance changes. We show, using 21km of data collected over a period of 3 months, that our system is capable of producing metric localisation estimates from night-to-day or summer-to-winter conditions.
Resumo:
This presentation incorporated the live performance throughout, by the author, of movement from “The All Weather Project” by Liz Roche. Movement sections are indicated by italics. “I am going to start by dancing for you… Movement: Live performance of solo approximately 10 minutes in duration This is the introduction... Through my PhD research, I am examining the choreographic process from the perspective of the independent contemporary dancer, through embodying this role as a researcher/participant. My methodological frameworks, which utilise video documentation and journal writing, could be characterised as ethnographic, multi-modal embodied theorising, leading to “multi-dimensional theorising” (I adopt this term from Susan Melrose). In this way, I am unwinding the embodied practice of dancing, through the co-existent layers of experience, towards forming a theoretical understanding of the issues that arise for the dancer. The issues that I have identified as relevant to my research are those relating to the dancer’s ‘moving identity’ or way of moving, as a mutable and adaptable form that must alter and re-adjust to each different choreographic engram or movement vocabulary, that she/he encounters. I am examining this interplay between stability and change. I also reflect on the impact of destabilisation and flux on the dancer’s identity in a wider sense, as she/he relates outwardly to signifying factors within the social strata. Today I am going to bring you through a reflection on the working process of a dance piece as experienced from the inside. By doing so, I hope to capture and elucidate the multi-dimensional layers which existed for me within this process. Through displaying these fragments together, I endeavour to invoke the ‘totality’ of the experience...
Resumo:
"Contemporary society is in the midst of the boundless generation and collection of data, data that is produced from almost any measurable act. Be it weather or transport data sets published by government agencies, or the individual and interpersonal data generated by our digital interactions; a server somewhere is collating. With the rise of this digital data phenomenon comes questions of comprehension, purpose, ownership and translation. Without mediation digital data is an immense abstract list of text and numbers and in this abstracted form data sets become detached from the circumstances of their creation. Artists and digital creatives are building works from these constantly evolving data sets to develop a discourse that investigates, appropriates, reveals and reflects upon the society and environment that generates this medium. Datascape presents a range of works that use data as building blocks to facilitate connections and understanding around a range of personal, social and worldly issues. The exhibition is concerned with creating an opportunity for experiential discovery through engaging with work from some of the world’s prominent creatives in this field of practice. Utilising three thematic lenses: Generative Currents, the Anti-Sublime and the Human Context, the works offer a variety of pathways to traverse the Datascape. Lubi Thomas and Rachael Parsons, QUT Creative Industries Precinct"
Resumo:
Purpose To present the results of tests for the development of literary trails for domestic visitors and tourists in Brisbane, Queensland, and to situate these findings in the context of recent state government policy changes in relation to culture, community engagement and the environment. Design Broadly cultural studies: the article analyses changes in international and national cultural tourism and Queensland based issues before presenting the research findings. Findings a gap in tourist and cultural development models exists for the implementation of a network of sustainable literary trails in Brisbane--this model can be extended to regions around the state to meet the demands of the new tourist. Limitations Queensland weather and Australian distance which will require a regional approach that networks with transport and community hubs. Practical implications the research has produced new software for the use of self-guided walks; the locations for two specific area trails; and the involvement of the State Library of Queensland as a “hub” for the trails. Substantial support exists for further development in advanced locative media and gaming. Social implications the research demonstrates the importance of developing a sense of place that relates to culture, literary history and community for tourists, as well as the potential for community engagement.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
Road construction and maintenance activities present challenges for ensuring the safety of workers and the traveling public alike. Hazards in work zones are typically studied using historical crash records but the current study took a qualitative approach by interviewing 66 workers from various work zones in Queensland, Australia. This supplemented and enhanced the limited available data regarding the frequency and nature of work zone crashes in Australia, provided worker insights into contributing factors, and assessed their opinions on the likely effectiveness of current or future approaches to hazard mitigation. Workers may not be aware of objective data regarding effectiveness, but their attitudes and consequent levels of compliance can influence both the likelihood of implementation and the outcomes of safety measures. Despite the potential importance of worker perceptions, they have not been studied comprehensively to date, and thus this study fills a significant gap in the literature. Excessive vehicle speeds, driver distraction and aggression towards roadworkers, working in wet weather, at night and close to traffic stream were among the most common hazards noted by workers. The safety measures perceived to be most effective included police presence, active enforcement, and improving driver awareness and education about work zones. Worker perceptions differed according to their level of exposure to hazards.
Resumo:
Background: Hot air ballooning incidents are relatively rare, however, when they do occur they are likely to result in a fatality or serious injury. Human error is commonly attributed as the cause of hot air ballooning incidents; however, error in itself is not an explanation for safety failures. This research aims to identify, and establish the relative importance of factors contributing towards hot air ballooning incidents. Methods: Twenty-two Australian Ballooning Federation (ABF) incident reports were thematically coded using a bottom up approach to identify causal factors. Subsequently, 69 balloonists (mean 19.51 years’ experience) participated in a survey to identify additional causal factors and rate (out of seven) the perceived frequency and potential impact to ballooning operations of each of the previously identified causal factors. Perceived associated risk was calculated by multiplying mean perceived frequency and impact ratings. Results: Incident report coding identified 54 causal factors within nine higher level areas: Attributes, Crew resource management, Equipment, Errors, Instructors, Organisational, Physical Environment, Regulatory body and Violations. Overall, ‘weather’, ‘inexperience’ and ‘poor/inappropriate decisions’ were rated as having greatest perceived associated risk. Discussion: Although errors were nominated as a prominent cause of hot air ballooning incidents, physical environment and personal attributes are also particularly important for safe hot air ballooning operations. In identifying a range of causal factors the areas of weakness surrounding ballooning operations have been defined; it is hoped that targeted safety and training strategies can now be put into place removing these contributing factors and reducing the chance of pilot error.
Resumo:
This paper presents an online, unsupervised training algorithm enabling vision-based place recognition across a wide range of changing environmental conditions such as those caused by weather, seasons, and day-night cycles. The technique applies principal component analysis to distinguish between aspects of a location’s appearance that are condition-dependent and those that are condition-invariant. Removing the dimensions associated with environmental conditions produces condition-invariant images that can be used by appearance-based place recognition methods. This approach has a unique benefit – it requires training images from only one type of environmental condition, unlike existing data-driven methods that require training images with labelled frame correspondences from two or more environmental conditions. The method is applied to two benchmark variable condition datasets. Performance is equivalent or superior to the current state of the art despite the lesser training requirements, and is demonstrated to generalise to previously unseen locations.
Resumo:
Seasonal patterns in mortality have been recognised for decades, with a marked excess of deaths in winter, yet our understanding of the causes of this phenomenon is not yet complete. Research has shown that low and high temperatures are associated with increased mortality independently of season; however, the impact of unseasonal weather on mortality has been less studied. In this study, we aimed to determine if unseasonal patterns in weather were associated with unseasonal patterns in mortality. We obtained daily temperature, humidity and mortality data from 1988 to 2009 for five major Australian cities with a range of climates. We split the seasonal patterns in temperature, humidity and mortality into their stationary and non-stationary parts. A stationary seasonal pattern is consistent from year-to-year, and a non-stationary pattern varies from year-to-year. We used Poisson regression to investigate associations between unseasonal weather and an unusual number of deaths. We found that deaths rates in Australia were 20–30% higher in winter than summer. The seasonal pattern of mortality was non-stationary, with much larger peaks in some winters. Winters that were colder or drier than a typical winter had significantly increased death risks in most cities. Conversely summers that were warmer or more humid than average showed no increase in death risks. Better understanding the occurrence and cause of seasonal variations in mortality will help with disease prevention and save lives.
Resumo:
Grateful Fateful Sunshine Rain is a permanent public artwork commissioned by Aria Property Group through a competitive process for the Austin apartment building in South Brisbane. Artist Statement: Residents of Brisbane have a complex relationship with weather. As the capital of the Sunshine State, weather is an integral part of the city’s cultural identity. Weather deeply affects the mood of the city – from the excitement of scantily clad partygoers on balmy December evenings and late February’s lethargy, to the deepening anxiety that emerges after 100 days of rain (or more commonly, 100 days without rain). With a brief nod to the city’s – now decommissioned – iconic MCL weather beacon, Grateful Fateful Sunshine Rain taps into this aspect of Brisbane’s psyche with poetic, illuminated visualisations of real-time weather forecasts issued by the Bureau of Meteorology. Each evening, the artwork downloads tomorrow’s forecast from the Bureau of Meteorology website. Data including, current local temperature, humidity, wind speed & direction, precipitation (rain, hail etc), are used to generate a lighting display that conveys how tomorrow will feel. The artwork’s background colour indicates the expected temperature – from cold blues through mild pastel pinks and blues to bright hot oranges and reds. White fluffy clouds roll across the artwork if cloud is predicted. The density of these clouds indicates the level of cover whilst movement indicates expected wind speed and direction. If rain is predicted, sparkles of white light will appear on top of whichever background colour is chosen for the next day’s temperature. Sparkles appear constantly before wet, drizzly days, and intermittently if scattered showers are predicted. Intermittent, but more intense sparkles appear before rain storms or thunderstorms. Research Contribution: The work has made contributions to the field in the way it rethinks approaches to the conceptualization, design and realization of illuminated urban media. This has led to new theorizations of urban media, which consider light and illumination can be used to convey meaningful data. The research has produced new methods for controlling illumination systems using tools and techniques typically employed in computation arts. It has also develop methods and processes for the design and production of illuminated urban media architectures that are connected to real time data sources, and do which not follow the assumed logics of screen based media and displays.
Resumo:
One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.
Resumo:
A sound understanding of travellers’ behavioural changes and adaptation when facing a natural disaster is a key factor in efficiently and effectively managing transport networks at such times. This study specifically investigates the importance of travel/traffic information and its impact on travel behaviour during natural disasters. Using the 2011 Brisbane flood as a case study, survey respondents’ perceptions of the importance of travel/traffic information before, during, and after the flood were modelled using random-effects ordered logit. A hysteresis phenomenon was observed: respondents’ perceptions of the importance of travel/traffic information increased during the flood, and although its perceived importance decreased after the flood, it did not return to the pre-flood level. Results also reveal that socio-demographic features (such as gender and age) have a significant impact on respondents’ perceptions of the importance of travel/traffic information. The roles of travel time and safety in a respondent’s trip planning are also significantly correlated to their perception of the importance of this information. The analysis further shows that during the flood, respondents generally thought that travel/traffic information was important, and adjusted their travel plans according to information received. When controlling for other factors, the estimated odds of changing routes and cancelling trips for a respondent who thought that travel/traffic information was important, are respectively about three times and seven times the estimated odds for a respondent who thought that travel/traffic information was not important. In contrast, after the flood, the influence of travel/traffic information on respondents’ travel behaviour diminishes. Finally, the analysis shows no evidence of the influence of travel/traffic information’s on respondents’ travel mode; this indicates that inducing travel mode change is a challenging task.
Resumo:
We describe our experiences with automating a large fork-lift type vehicle that operates outdoors and in all weather. In particular, we focus on the use of independent and robust localisation systems for reliable navigation around the worksite. Two localisation systems are briefly described. The first is based on laser range finders and retro-reflective beacons, and the second uses a two camera vision system to estimate the vehicle’s pose relative to a known model of the surrounding buildings. We show the results from an experiment where the 20 tonne experimental vehicle, an autonomous Hot Metal Carrier, was conducting autonomous operations and one of the localisation systems was deliberately made to fail.
Resumo:
Changing environments pose a serious problem to current robotic systems aiming at long term operation under varying seasons or local weather conditions. This paper is built on our previous work where we propose to learn to predict the changes in an environment. Our key insight is that the occurring scene changes are in part systematic, repeatable and therefore predictable. The goal of our work is to support existing approaches to place recognition by learning how the visual appearance of an environment changes over time and by using this learned knowledge to predict its appearance under different environmental conditions. We describe the general idea of appearance change prediction (ACP) and investigate properties of our novel implementation based on vocabularies of superpixels (SP-ACP). Our previous work showed that the proposed approach significantly improves the performance of SeqSLAM and BRIEF-Gist for place recognition on a subset of the Nordland dataset under extremely different environmental conditions in summer and winter. This paper deepens the understanding of the proposed SP-ACP system and evaluates the influence of its parameters. We present the results of a large-scale experiment on the complete 10 h Nordland dataset and appearance change predictions between different combinations of seasons.
Resumo:
The Australian water sector needs to adapt to effectively deal with the impacts of climate change on its systems. Challenges as a result of climate change include increasingly extreme occurrences of weather events including flooding and droughts (Pittock, 2011). In response to such challenges, the National Water Commission in Australia has identified the need for the water sector to transition towards being readily adaptable and able to respond to complex needs for a variety of supply and demand scenarios (National Water Commission, 2013). To successfully make this transition, the sector will need to move away from business as usual, and proactively pursue and adopt innovative approaches and technologies as a means to successfully address the impacts of climate change on the Australian water sector. In order to effectively respond to specific innovation challenges related to the sector, including climate change, it is first necessary to possess a foundational understanding about the key elements related to innovation in the sector. This paper presents this base level understanding, identifying the key barriers, drivers and enablers, and elements for innovative practise in the water sector. After initially inspecting the literature around the challenges stemming from climate change faced by the sector, the paper then examines the findings from the initial two rounds of a modified Delphi study, conducted with experts from the Australian water sector, including participants from research, government and industry backgrounds. The key barriers, drivers and enablers for innovation in the sector identified during the initial phase of the study formed the basis for the remainder of the investigation. Key elements investigated were: barriers – scepticism, regulation systems, inconsistent policy; drivers – influence of policy, resource scarcity, thought leadership; enablers – framing the problem, effective regulations, community acceptance. There is a convincing argument for the water sector transitioning to a more flexible, adaptive and responsive system in the face of challenges resulting from climate change. However, without first understanding the challenges and opportunities around making this transition, the likelihood of success is limited. For that reason, this paper takes the first step in understanding the elements surrounding innovation in the Australian water sector.