204 resultados para 5G Massive MIMO SCMA F-OFDM C-RAN MATLAB IOT Small Cells mmWave Beam-Forming
Resumo:
This research showed that one solution that can be used to help the students learn how to program is by providing a system that can behave like a tutor to teach the students individually. An intelligent tutoring system named CSTutor was built in this research to assist the students. CSTutor asks the student to write programs in a role playing environment, presenting the most appropriate tasks to the students, and provides help to the students' problems.
Resumo:
Understanding the natural variability of the Earth's climate system and accurately identifying potential anthropogenic influences requires long term, geographically distributed records of key climate indicators, such as temperature and precipitation that extend prior to the last 400. years of the Holocene. Reef corals provide an excellent source of high resolution climate records, and importantly represent the tropical marine environment where palaeoclimate data are urgently required. Recent decades have seen significant improvement in our understanding of coral biomineralisation, the associated uptake of geochemical proxies and methods of identifying and understanding the effects of both early and late, post depositional diagenetic alteration. These processes all have significant implications for interpreting geochemical proxies relevant to palaeoclimatic reconstructions. This paper reviews the current 'state of the art' in terms of coral based palaeoclimate reconstructions and highlights a key remaining problem. The majority of coral based palaeoclimate research has been derived from massive colonies of Porites. However, massive Porites are not globally abundant and may not provide material of a particular age of interest in those regions where they are present. Therefore, there is great potential for alternate coral genera to act as complimentary climate archives. While it remains critical to consider five key factors - vital effects, differential growth morphologies, geochemical heterogeneity in the skeletal ultrastructure, transfer equation selection and diagenetic screening of skeletal material - in order to allow the highest level of accuracy in coral palaeoclimate reconstructions, it is also important to develop alternate taxa for palaeoclimate studies in regions where Porites colonies are absent or rare. Currently as many as nine genera other than Porites have proven at least limited utility in palaeothermometry, most of which are found in the Atlantic/Caribbean region where massive Porites do not exist. Even branching taxa such as Acropora have significant potential to preserve environmental archives. Increasing this capability will greatly expand the number of potential geochemical archives available for longer term temporal records of palaeoclimate.
Resumo:
The application of robotics to protein crystallization trials has resulted in the production of millions of images. Manual inspection of these images to find crystals and other interesting outcomes is a major rate-limiting step. As a result there has been intense activity in developing automated algorithms to analyse these images. The very first step for most systems that have been described in the literature is to delineate each droplet. Here, a novel approach that reaches over 97% success rate and subsecond processing times is presented. This will form the seed of a new high-throughput system to scrutinize massive crystallization campaigns automatically. © 2010 International Union of Crystallography Printed in Singapore-all rights reserved.
Resumo:
Background Up-to-date evidence on levels and trends for age-sex-specific all-cause and cause-specific mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specific all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specific causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65·3 years (UI 65·0–65·6) in 1990, to 71·5 years (UI 71·0–71·9) in 2013, while the number of deaths increased from 47·5 million (UI 46·8–48·2) to 54·9 million (UI 53·6–56·3) over the same interval. Global progress masked variation by age and sex: for children, average absolute differences between countries decreased but relative differences increased. For women aged 25–39 years and older than 75 years and for men aged 20–49 years and 65 years and older, both absolute and relative differences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10·7%, from 4·3 million deaths in 1990 to 4·8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specific mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.
Resumo:
This study examines the benefits of Cooperative Intelligent Transport Systems (C-ITS) in weaving sections. The research proposes a lane-changing advisory application to alleviate the lane-changing concentration in weaving sections by coordinating weaving vehicles. While non-weaving vehicles travel as normal, weaving vehicles are monitored and advised through personalized messages based on their destination lane. The findings of this research, derived from a microscopic simulation in AIMSUN, reveal that the proposed strategy has the potential to improve delay significantly and that it can be applied to any existing one-sided weaving sections.
Resumo:
The requirement of isolated relays is one of the prime obstacles in utilizing sequential slotted cooperative protocols for Vehicular Ad-hoc Networks (VANET). Significant research advancement has taken place to improve the diversity multiplexing trade-off (DMT) of cooperative protocols in conventional mobile networks without much attention on vehicular ad-hoc networks. We have extended the concept of sequential slotted amplify and forward (SAF) protocols in the context of urban vehicular ad-hoc networks. Multiple Input Multiple Output (MIMO) reception is used at relaying vehicular nodes to isolate the relays effectively. The proposed approach adds a pragmatic value to the sequential slotted cooperative protocols while achieving attractive performance gains in urban VANETs. We have analysed the DMT bounds and the outage probabilities of the proposed scheme. The results suggest that the proposed scheme can achieve an optimal DMT similar to the DMT upper bound of the sequential SAF. Furthermore, the outage performance of the proposed scheme outperforms the SAF protocol by 2.5 dB at a target outage probability of 10-4.
Resumo:
In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.
Resumo:
Aim: In 2013 QUT introduced the Medical Imaging Training Immersive Environment (MITIE) as a virtual reality (VR) platform that allowed students to practice general radiography. The system software has been expanded to now include C-Arm. The aim of this project was to investigate the use of this technology in the pedagogy of undergraduate medical imaging students who have limited to no experience in the use of the C-Arm clinically. Method: The Medical Imaging Training Immersive Environment (MITIE) application provides students with realistic and fully interactive 3D models of C-Arm equipment. As with VR initiatives in other health disciplines (1–2) the software mimics clinical practice as much as possible and uses 3D technology to enhance 3D spatial awareness and realism. The application allows students to set up and expose a virtual patient in a 3D environment as well as creating the resultant “image” for comparison with a gold standard. Automated feedback highlights ways for the student to improve their patient positioning, equipment setup or exposure factors. The students' equipment knowledge was tested using an on line assessment quiz and surveys provided information on the students' pre-clinical confidence scale, with post-clinical data comparisons. Ethical approval for the project was provided by the university ethics panel. Results: This study is currently under way and this paper will present analysis of initial student feedback relating to the perceived value of the application for confidence in a high risk environment (i.e. operating theatre) and related clinical skills development. Further in-depth evaluation is ongoing with full results to be presented. Conclusion: MITIE C-Arm has a development role to play in the pre-clinical skills training for Medical Radiation Science students. It will augment their theoretical understanding prior to their clinical experience. References 1. Bridge P, Appleyard R, Ward J, Phillips R, Beavis A. The development and evaluation of a virtual radiotherapy treatment machine using an immersive visualisation environment. Computers and Education 2007; 49(2): 481–494. 2. Gunn T, Berry C, Bridge P et al. 3D Virtual Radiography: Development and Initial Feedback. Paper presented at the 10th Annual Scientific Meeting of Medical Imaging and Radiation Therapy, March 2013 Hobart, Tasmania.
Resumo:
Executive Summary: Completion of the Veloway 1 (V1) will provide a dedicated and safe route for cyclists between the Brisbane CBD and the Gateway Motorway off-ramp at Eight Mile Plains alongside the South East Motorway. The V1 is being delivered in stages and when completed will provide a dedicated 3m wide cycleway 17km in length. Two stages (D and E) remain to be constructed to complete the V1. Major trip attractors along the V1 include the Mater, Princes Alexandra and Greenslopes Hospitals, two campuses of Griffith University, Garden City shopping centre and the Australian Tax Office. This report assesses the available evidence on the impacts on cycling behaviour of the recently completed V1 Stage C. The data sources informing this review include three intercept surveys, motion activated traffic cameras and travel time surveys on the V1 and adjoining South East Freeway Bikeway (SEFB), Strava app data, and cyclist crash data along Logan Road. The key findings from the evidence are that the completed V1 Stage C has: a Attracted cyclists from Holland Park, Holland Park West, Mt Gravatt and southern parts of Tarragindi onto the V1 Stage C. b Reduced the crash exposure of pedestrians to cyclists by attracting higher speed cyclists off the adjoining SEFB onto the cycling dedicated V1 Stage C. c Reduced the potential crash exposure of cyclists to motor vehicles by attracting cyclists off Logan Road on to the V1. d Provided travel time benefits to cyclists and reduced road crossings (eight down to two). e Predominantly attracted adults commuting alone to and from work and university. The evidence shows that the two traffic crossings across Birdwood Road (required as a temporary measure until the V1 is completed) negate much of the travel time gains of the V1 Stage C compared to the adjoining SEFB for southbound cyclists. Many cyclists accessing the V1 Stage C from the south are cycling in high-volume vehicular traffic lanes to reduce their travel time along Birdwood Road, but in the process are increasing their exposure to crashes with motor vehicles. Based on these findings this report recommends that TMR: a. Continue with plans to complete the V1 Veloway b. Undertake an engineering feasibility assessment to determine the viability of constructing a section of the V1 Stage E from the intersection Weller and Birdwood Roads over Marshall Road and along Bapaume Road on the western side of the Motorway to the intersection of Bapaume and Sterculia Roads. c. In the interim, improve signage and Birdwood Road crossing points for cyclists accessing and egressing the southern end of the V1 Stage C. d. Work with Brisbane City Council to identify the safest and most practical bicycle facilities to facilitate cycle travel between Logan Road and the V1 south of Birdwood Road. e. Improve the awareness of the V1 Stage C through signage for cyclists approaching from the north with the aim of providing a better understanding of the route of the V1 to the south. f. Refine the use of motion activated traffic cameras to improve the capture rate of useable images and obtain an ongoing collection over time of V1 usage data. g. Undertake discussions with Strava, Inc. to refine the presentation of Strava data to improve visual understanding of maps showing before and after cycle route volumes along and on roads leading to the V1.
Resumo:
Antioxidants in acute physical exercise and exercise training remain a hot topic in sport nutrition, exercise physiology and biology, in general (Jackson, 2008; Margaritis and Rousseau, 2008; Gomez-Cabrera et al., 2012; Nikolaidis et al., 2012). During the past few decades, antioxidants have received attention predominantly as a nutritional strategy for preventing or minimising detrimental effects of reactive oxygen and nitrogen species (RONS), which are generated during and after strenuous exercise (Jackson, 2008, 2009; Powers and Jackson, 2008). Antioxidant supplementation has become a common practice among athletes as a means to (theoretically) reduce oxidative stress, promote recovery and enhance performance (Peternelj and Coombes, 2011). However, until now, requirements of antioxidant micronutrients and antioxidant compounds for athletes training for and competing in different sport events, including marathon running, triathlon races or team sport events involving repeated sprinting, have not been determined sufficiently (Williams et al., 2006; Margaritis and Rousseau, 2008). Crucially, evidence has been emerging that higher dosages of antioxidants may not necessarily be beneficial in this context, but can also elicit detrimental effects by interfering with performance-enhancing (Gomez-Cabrera et al., 2008) and health-promoting training adaptations (Ristow et al., 2009). As originally postulated in a pioneering study on exercise-induced production of RONS by Davies et al. (1982) in the early 1980s, evidence has been increasing in recent years that RONS are not only damaging agents, but also act as signalling molecules for regulating muscle function (Reid, 2001; Jackson, 2008) and for initiating adaptive responses to exercise (Jackson, 2009; Powers et al., 2010). The recognition that antioxidants could, vice versa, interact with the signalling pathways underlying the responses to acute (and repeated) bouts of exercise has contributed important novel aspects to the continued discussion on antioxidant requirements for athletes. In view of the recent advances in this field, it is the aim of this report to examine the current knowledge of antioxidants, in particular of vitamins C and E, in the basic nutrition of athletes. While overviews on related topics including basic mechanisms of exercise-induced oxidative stress, redox biology, antioxidant defence systems and a summary of studies on antioxidant supplementation during exercise training are provided, this does not mean that this report is comprehensive. Several issues of the expanding and multidisciplinary field of antioxidants and exercise are covered elsewhere in this book and/or in the literature. Exemplarily, the reader is referred to reviews on oxidative stress (Konig et al., 2001; Vollaard et al., 2005; Knez et al., 2006; Powers and Jackson, 2008; Nikolaidis et al., 2012), redox-sensitive signalling and muscle function (Reid, 2001; Vollaard et al., 2005; Jackson, 2008; Ji, 2008; Powers and Jackson, 2008; Powers et al., 2010; Radak et al., 2013) and antioxidant supplementation (Williams et al., 2006; Peake et al., 2007; Peternelj and Coombes, 2011) in the context with exercise. Within the scope of the report, we rather aim to address the question regarding requirements of antioxidants, specifically vitamins C and E, during exercise training, draw conclusions and provide practical implications from the recent research.
Resumo:
Explores how young people in Australia first come to inject drugs and how they learn about hepatitis C and sterile injecting drug use. Background on hepatitis C; Reasons for injecting drugs; Selection criteria for young people's participation in the i2i Project.
Resumo:
The Jericho kimberlite (173.1. ±. 1.3. Ma) is a small (~. 130. ×. 70. m), multi-vent system that preserves products from deep (>. 1. km?) portions of kimberlite vents. Pit mapping, drill core examination, petrographic study, image analysis of olivine crystals (grain size distributions and shape studies), and compositional and mineralogical studies, are used to reconstruct processes from near-surface magma ascent to kimberlite emplacement and alteration. The Jericho kimberlite formed by multiple eruptions through an Archean granodiorite batholith that was overlain by mid-Devonian limestones ~. 1. km in thickness. Kimberlite magma ascended through granodiorite basement by dyke propagation but ascended through limestone, at least in part, by locally brecciating the host rocks. After the first explosive breakthrough to surface, vent deepening and widening occurred by the erosive forces of the waxing phase of the eruption, by gravitationally induced failures as portions of the vent margins slid into the vent and, in the deeper portions of the vent (>. 1. km), by scaling, as thin slabs burst from the walls into the vent. At currently exposed levels, coherent kimberlite (CK) dykes (<. 40. cm thick) are found to the north and south of the vent complex and represent the earliest preserved in-situ products of Jericho magmatism. Timing of CK emplacement on the eastern side of the vent complex is unclear; some thick CK (15-20. m) may have been emplaced after the central vent was formed. Explosive eruptive products are preserved in four partially overlapping vents that are roughly aligned along strike with the coherent kimberlite dyke. The volcaniclastic kimberlite (VK) facies are massive and poorly sorted, with matrix- to clast-supported textures. The VK facies fragmented by dry, volatile-driven processes and were emplaced by eruption column collapse back into the volcanic vents. The first explosive products, poorly preserved because of partial destruction by later eruptions, are found in the central-east vent and were formed by eruption column collapse after the vent was largely cleared of country rock debris. The next active vent was either the north or south vent. Collapse of the eruption column, linked to a vent widening episode, resulted in coeval avalanching of pipe margin walls into the north vent, forming interstratified lenses of country rock-rich boulder breccias in finer-grained volcaniclastic kimberlite. South vent kimberlite has similar characteristics to kimberlite of the north vent and likely formed by similar processes. The final eruptive phase formed olivine-rich and moderately sorted deposits of the central vent. Better sorting is attributed to recycling of kimberlite debris by multiple eruptions through the unconsolidated volcaniclastic pile and associated collapse events. Post-emplacement alteration varies in intensity, but in all cases, has overprinted the primary groundmass and matrix, in CK and VK, respectively. Erosion has since removed all limestone cover.
Resumo:
Kimberlite drill core from the Muskox pipe (Northern Slave Province, Nunavut, Canada) highlights the difficulties in distinguishing coherent from fragmental kimberlite and assessing the volcanological implications of the apparent gradational contact between the two facies. Using field log data, petrography, and several methods to quantify crystal and xenolith sizes and abundances, the pipe is divided into two main facies, dark-coloured massive kimberlite (DMK) and light-coloured fragmental kimberlite (LFK). DMK is massive and homogeneous, containing country-rock lithic clasts (~ 10%) and olivine macrocrysts (~ 15%) set in a dark, typically well crystallised, interstitial medium containing abundant microphenocrysts of olivine (~ 15%), opaques and locally monticellite, all of which are enclosed by mostly serpentine. In general, LFK is also massive and structureless, containing ~ 20% country-rock lithic clasts and ~ 12% olivine macrocrysts. These framework components are supported in a matrix of serpentinized olivine microphenocrysts (10%), microlites of clinopyroxene, and phlogopite, all of which are enclosed by serpentine. The contact between DMK and LFK facies is rarely sharp, and more commonly is gradational (from 5 cm to ~ 10 m). The contact divides the pipe roughly in half and is sub-vertical with an irregular shape, locally placing DMK facies both above and below the fragmental rocks. Most features of DMK are consistent with a fragmental origin, particularly the crystal- and xenolith-rich nature (~ 55-65%), but there are some similarities with rocks described as coherent kimberlite in the literature. We discuss possible origins of gradational contacts and consider the significance for understanding the origin of the DMK facies, with an emphasis on the complications of alteration overprinting of primary textures.
Resumo:
We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.