371 resultados para 292-3
Resumo:
Ureaplasma species are the microorganisms most frequently associated with adverse pregnancy outcomes. The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a key virulence factor of ureaplasmas. The MBA demonstrates size variation, which we have shown previously to be correlated with the severity of chorioamnion inflammation. We aimed to investigate U. parvum serovar 3 pathogenesis in vivo, using a sheep model, by investigating: MBA variation after long term (chronic) and short term (acute) durations of in utero ureaplasma infections, and the severity of chorioamnionitis and inflammation in other fetal tissues. Inocula of 2x107 colony-forming-units (CFU) of U. parvum serovar 3 (Up) or media controls (C) were injected intra-amniotically into pregnant ewes at one of three time points: day 55 (69d Up, n=8; C69, n=4); day 117 (7d Up, n=8; C7, n=2); and day 121 (3d Up, n=8; C3, n=2) of gestation (term=145-150d). At day 124, preterm fetuses were delivered surgically. Samples of chorioamnion, fetal lung, and umbilical cord were: (i) snap frozen for subsequent ureaplasma culture, and (ii) fixed, embedded, sectioned and stained by haematoxylin and eosin stain for histological analysis. Selected fetal lung clinical ureaplasma isolates were cloned and filtered to obtain cultures from a single CFU. Passage 1 and clone 2 ureaplasma cultures were tested by western blot to demonstrate MBA variation. In acute durations of ureaplasma infection no MBA variants (3d Up) or very few MBA variants (7d Up) were present when compared to the original inoculum. However, numerous MBA size variants were generated in vivo (alike within contiguous tissues, amniotic fluid and fetal lung, but different variants were present within chorioamnion), during chronic, 69d exposure to ureaplasma infection. For the first time we have shown that the degree of ureaplasma MBA variation in vivo increased with the duration of gestation.
Resumo:
Background: We have developed a sheep model of intrauterine ureaplasma infection. We aimed to examine the capability of ureaplasmas in the amniotic fluid to infect the fetus and alter fetal development...
Resumo:
Dear Editor We thank Dr Klek for his interest in our article and giving us the opportunity to clarify our study and share our thoughts. Our study looks at the prevalence of malnutrition in an acute tertiary hospital and tracked the outcomes prospectively.1 There are a number of reasons why we chose Subjective Global Assessment (SGA) to determine the nutritional status of patients. Firstly, we took the view that nutrition assessment tools should be used to determine nutrition status and diagnose presence and severity of malnutrition; whereas the purpose of nutrition screening tools are to identify individuals who are at risk of malnutrition. Nutritional assessment rather than screening should be used as the basis for planning and evaluating nutrition interventions for those diagnosed with malnutrition. Secondly, Subjective Global Assessment (SGA) has been well accepted and validated as an assessment tool to diagnose the presence and severity of malnutrition in clinical practice.2, 3 It has been used in many studies as a valid prognostic indicator of a range of nutritional and clinical outcomes.4, 5, 6 On the other hand, Malnutrition Universal Screening Tool (MUST)7 and Nutrition Risk Screening 2002 (NRS 2002)8 have been established as screening rather than assessment tools.
Resumo:
The space and time fractional Bloch–Torrey equation (ST-FBTE) has been used to study anomalous diffusion in the human brain. Numerical methods for solving ST-FBTE in three-dimensions are computationally demanding. In this paper, we propose a computationally effective fractional alternating direction method (FADM) to overcome this problem. We consider ST-FBTE on a finite domain where the time and space derivatives are replaced by the Caputo–Djrbashian and the sequential Riesz fractional derivatives, respectively. The stability and convergence properties of the FADM are discussed. Finally, some numerical results for ST-FBTE are given to confirm our theoretical findings.
Resumo:
X-ray microtomography (micro-CT) with micron resolution enables new ways of characterizing microstructures and opens pathways for forward calculations of multiscale rock properties. A quantitative characterization of the microstructure is the first step in this challenge. We developed a new approach to extract scale-dependent characteristics of porosity, percolation, and anisotropic permeability from 3-D microstructural models of rocks. The Hoshen-Kopelman algorithm of percolation theory is employed for a standard percolation analysis. The anisotropy of permeability is calculated by means of the star volume distribution approach. The local porosity distribution and local percolation probability are obtained by using the local porosity theory. Additionally, the local anisotropy distribution is defined and analyzed through two empirical probability density functions, the isotropy index and the elongation index. For such a high-resolution data set, the typical data sizes of the CT images are on the order of gigabytes to tens of gigabytes; thus an extremely large number of calculations are required. To resolve this large memory problem parallelization in OpenMP was used to optimally harness the shared memory infrastructure on cache coherent Non-Uniform Memory Access architecture machines such as the iVEC SGI Altix 3700Bx2 Supercomputer. We see adequate visualization of the results as an important element in this first pioneering study.
Resumo:
Purpose: To examine the relationship between hip abductor muscle (HABD) strength and the magnitude of pelvic drop (MPD) for patients with non-specific low back pain (NSLBP) and controls (CON) prior to and following a 3-week HABD strengthening protocol. At baseline, we hypothesized that NSLBP patients would exhibit reduced HABD strength and greater MPD compared to CON. Following the protocol, we hypothesized that strength would increase and MPD would decrease. Relevance: The Trendelenburg test (TT) is a common clinical test used to examine the ability of the HABD to maintain horizontal pelvic position during single limb stance. However, no study has specifically tested this theory. Moreover, no study has investigated the relationship between HABD strength and pelvic motion during walking or tested whether increased HABD strength would reduce the MPD. Methods: Quasi-experimental with 3-week exercise intervention. Fifteen NSLBP patients (32.5yrs,range 21-51yrs; VAS baseline: 5.3cm) and 10 CON (29.5yrs,range 22-47yrs) were recruited. Isometric HABD strength was measured using a force dynamometer and the average of three maximal voluntary contractions were normalized to body mass (N/kg). Two-dimensional MPD (degrees) was measured using a 60 Hz camera and was derived from two retroreflective-markers placed on the posterior superior iliac spines. MPD was measured while performing the static TT and while walking and averaged over 10 consecutive footfalls. NSLBP patients completed a 3-week HABD strengthening protocol consisting of 2 open-kinetic-chain exercises then all measures were repeated. Non-parametric analysis was used for group comparisons and correlation analysis. Results: At baseline, the NSLBP patients demonstrated 31% reduced HABD strength (mean=6.6 N/kg) compared to CON (mean=9.5 N/kg: p=0.03) and no significant differences in maximal pelvic frontal plane excursion while walking (NSLBP:mean=8.1°, CON:mean=7.1°: p=0.72). No significant correlations were measured between left HABD strength and right MPD (r=-0.37, p=0.11), or between right HABD strength and left MPD (r=-0.04, p=0.84) while performing the static TT. Following the 3-week strengthening protocol, NSLBP patients demonstrated a 12% improvement in strength (Post:mean=7.4 N/kg: p=0.02), a reduction in pain (VAS followup: 2.8cm), but no significant decreases in MPD while walking (p=0.92). Conclusions: NSLBP patients demonstrated reduced HABD strength at baseline and were able to increase strength and reduce pain in a 3-week period. However, despite increases in HABD strength, the NSLBP group exhibited similar MPD motion during the static TT and while walking compared to baseline and controls. Implications: The results suggest that the HABD alone may not be primarily responsible for controlling a horizontal pelvic position during static and dynamic conditions. Increasing the strength of the hip abductors resulted in a reduction of pain in NSLBP patients providing evidence for further research to identify specific musculature responsible for controlling pelvic motion.
Resumo:
In the title squaraine dye solvate, C26H24N2O2·2CHCl3, the dye molecule is essentially planar, except for the methyl groups, having a maximum deviation over the 26-membered delocalized bond system of 0.060 (2) Å. It possesses crystallographic twofold rotational symmetry with the indole ring systems adopting a syn conformation. The molecular structure features intramolecular N-HO hydrogen bonds enclosing conjoint S7 ring motifs about one of the dioxocyclobutene O atoms, while the two chloroform solvent molecules are linked to the second O atom through C-HO hydrogen bonds.
Resumo:
The structures of two ammonium salts of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S-·H2O, (I), the 5-SSA- monoanions give two types of head-to-tail laterally linked cyclic hydrogen-bonding associations, both with graph-set R44(20). The first involves both carboxylic acid O-HOwater and water O-HOsulfonate hydrogen bonds at one end, and ammonium N-HOsulfonate and N-HOcarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O-HOsulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three-dimensional framework structure through N-HO and water O-HO hydrogen bonds to sulfonate O-atom acceptors. Anhydrous triammonium 3-carboxy-4-hydroxybenzenesulfonate 3-carboxylato-4-hydroxybenzenesulfonate, 3NH4+·C7H4O6S2-·C7H5O6S-, (II), is unusual, having both dianionic 5-SSA2- and monoanionic 5-SSA- species. These are linked by a carboxylic acid O-HO hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half-cations lying on crystallographic twofold rotation axes), give a pseudo-centrosymmetric asymmetric unit. Cation-anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N-HO hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three-dimensional framework structure. This work further demonstrates the utility of the 5-SSA- monoanion for the generation of stable hydrogen-bonded crystalline materials, and provides the structure of a dianionic 5-SSA2- species of which there are only a few examples in the crystallographic literature.
Resumo:
The optimisation study of the fabrication of a compact TiO2 blocking layer (via Spray Pyrolysis Deposition) for poly (3-hexylthiopene) (P3HT) for Solid State Dye Sensitized Solar Cells (SDSCs) is reported. We used a novel spray TiO2 precursor solution composition obtained by adding acetylacetone to a conventional formulation (Diisopropoxytitanium bis (acetylacetonate) in ethanol). By Scanning Electron Microscopy a TiO2 layer with compact morphology and thickness of around 100 nmis shown. Through a Tafel plot analysis an enhancement of the device diode-like behaviour induced by the acetylacetone blocking layer respect to the conventional one is observed. Significantly, the device fabricatedwith the acetylacetone blocking layer shows an overall increment of the cell performance with respect to the cellwith the conventional one (DJsc/Jsc = +13.8%, DFF/FF = +39.7%, DPCE/PCE = +55.6%). A conversion efficiency optimumis found for 15 successive spray cycles where the diode-like behaviour of the acetylacetone blocking layer is more effective. Over three batches of cells (fabricated with P3HT and dye D35) an average conversion efficiency value of 3.9% (under a class A sun simulator with 1 sun A.M. 1.5 illumination conditions) was measured. From the best cell we fabricated a conversion efficiency value of 4.5% was extracted. This represents a significant increment with respect to previously reported values for P3HT/dye D35 based SDSCs.
Resumo:
The mineral amarantite Fe23+(SO4)O∙7H2O has been studied using a combination of techniques including thermogravimetry, electron probe analyses and vibrational spectroscopy. Thermal analysis shows decomposition steps at 77.63, 192.2, 550 and 641.4°C. The Raman spectrum of amarantite is dominated by an intense band at 1017 cm-1 assigned to the SO42- ν1 symmetric stretching mode. Raman bands at 1039, 1054, 1098, 1131, 1195 and 1233 cm-1 are attributed to the SO42- ν3 antisymmetric stretching modes. Very intense Raman band is observed at 409 cm-1 with shoulder bands at 399, 451 and 491 cm-1 are assigned to the v2 bending modes. A series of low intensity Raman bands are found at 543, 602, 622 and 650 cm-1 are assigned to the v4 bending modes. A very sharp Raman band at 3529 cm-1 is assigned to the stretching vibration of OH units. A series of Raman bands observed at 3025, 3089, 3227, 3340, 3401 and 3480 cm-1 are assigned to water bands. Vibrational spectroscopy enables aspects of the molecular structure of the mineral amarantite to be ascertained.
Resumo:
The pegmatite mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm�1 assigned to the PO3�4 symmetric stretching mode. Multiple Raman bands are observed in the PO3�4 antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the m4 and m2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm�1 are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite.
Resumo:
Alterations in cognitive function are characteristic of the aging process in humans and other animals. However, the nature of these age related changes in cognition is complex and is likely to be influenced by interactions between genetic predispositions and environmental factors resulting in dynamic fluctuations within and between individuals. These inter and intra-individual fluctuations are evident in both so-called normal cognitive aging and at the onset of cognitive pathology. Mild Cognitive Impairment (MCI), thought to be a prodromal phase of dementia, represents perhaps the final opportunity to mitigate cognitive declines that may lead to terminal conditions such as dementia. The prognosis for people with MCI is mixed with the evidence suggesting that many will remain stable within 10-years of diagnosis, many will improve, and many will transition to dementia. If the characteristics of people who do not progress to dementia from MCI can be identified and replicated in others it may be possible to reduce or delay dementia onset, thus reducing a growing personal and public health burden. Furthermore, if MCI onset can be prevented or delayed, the burden of cognitive decline in aging populations worldwide may be reduced. A cognitive domain that is sensitive to the effects of advancing age, and declines in which have been shown to presage the onset of dementia in MCI patients, is executive function. Moreover, environmental factors such as diet and physical activity have been shown to affect performance on tests of executive function. For example, improvements in executive function have been demonstrated as a result of increased aerobic and anaerobic physical activity and, although the evidence is not as strong, findings from dietary interventions suggest certain nutrients may preserve or improve executive functions in old age. These encouraging findings have been demonstrated in older adults with MCI and their non-impaired peers. However, there are some gaps in the literature that need to be addressed. For example, little is known about the effect on cognition of an interaction between diet and physical activity. Both are important contributors to health and wellbeing, and a growing body of evidence attests to their importance in mental and cognitive health in aging individuals. Yet physical activity and diet are rarely considered together in the context of cognitive function. There is also little known about potential underlying biological mechanisms that might explain the physical activity/diet/cognition relationship. The first aim of this program of research was to examine the individual and interactive role of physical activity and diet, specifically long chain polyunsaturated fatty acid consumption(LCn3) as predictors of MCI status. The second aim is to examine executive function in MCI in the context of the individual and interactive effects of physical activity and LCn3.. A third aim was to explore the role of immune and endocrine system biomarkers as possible mediators in the relationship between LCn3, physical activity and cognition. Study 1a was a cross-sectional analysis of MCI status as a function of erythrocyte proportions of an interaction between physical activity and LCn3. The marine based LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both received support in the literature as having cognitive benefits, although comparisons of the relative benefits of EPA or DHA, particularly in relation to the aetiology of MCI, are rare. Furthermore, a limited amount of research has examined the cognitive benefits of physical activity in terms of MCI onset. No studies have examined the potential interactive benefits of physical activity and either EPA or DHA. Eighty-four male and female adults aged 65 to 87 years, 50 with MCI and 34 without, participated in Study 1a. A logistic binary regression was conducted with MCI status as a dependent variable, and the individual and interactive relationships between physical activity and either EPA or DHA as predictors. Physical activity was measured using a questionnaire and specific physical activity categories were weighted according to the metabolic equivalents (METs) of each activity to create a physical activity intensity index (PAI). A significant relationship was identified between MCI outcome and the interaction between the PAI and EPA; participants with a higher PAI and higher erythrocyte proportions of EPA were more likely to be classified as non-MCI than their less active peers with less EPA. Study 1b was a randomised control trial using the participants from Study 1a who were identified with MCI. Given the importance of executive function as a determinant of progression to more severe forms of cognitive impairment and dementia, Study 1b aimed to examine the individual and interactive effect of physical activity and supplementation with either EPA or DHA on executive function in a sample of older adults with MCI. Fifty male and female participants were randomly allocated to supplementation groups to receive 6-months of supplementation with EPA, or DHA, or linoleic acid (LA), a long chain polyunsaturated omega-6 fatty acid not known for its cognitive enhancing properties. Physical activity was measured using the PAI from Study 1a at baseline and follow-up. Executive function was measured using five tests thought to measure different executive function domains. Erythrocyte proportions of EPA and DHA were higher at follow-up; however, PAI was not significantly different. There was also a significant improvement in three of the five executive function tests at follow-up. However, regression analyses revealed that none of the variance in executive function at follow-up was predicted by EPA, DHA, PAI, the EPA by PAI interaction, or the DHA by PAI interaction. The absence of an effect may be due to a small sample resulting in limited power to find an effect, the lack of change in physical activity over time in terms of volume and/or intensity, or a combination of both reduced power and no change in physical activity. Study 2a was a cross-sectional study using cognitively unimpaired older adults to examine the individual and interactive effects of LCn3 and PAI on executive function. Several possible explanations for the absence of an effect were identified. From this consideration of alternative explanations it was hypothesised that post-onset interventions with LCn3 either alone or in interation with self-reported physical activity may not be beneficial in MCI. Thus executive function responses to the individual and interactive effects of physical activity and LCn3 were examined in a sample of older male and female adults without cognitive impairment (n = 50). A further aim of study 2a was to operationalise executive function using principal components analysis (PCA) of several executive function tests. This approach was used firstly as a data reduction technique to overcome the task impurity problem, and secondly to examine the executive function structure of the sample for evidence of de-differentiation. Two executive function components were identified as a result of the PCA (EF 1 and EF 2). However, EPA, DHA, the PAI, or the EPA by PAI or DHA by PAI interactions did not account for any variance in the executive function components in subsequent hierarchical multiple regressions. Study 2b was an exploratory correlational study designed to explore the possibility that immune and endocrine system biomarkers may act as mediators of the relationship between LCn3, PAI, the interaction between LCn3 and PAI, and executive functions. Insulin-like growth factor-1 (IGF-1), an endocrine system growth hormone, and interleukin-6 (IL-6) an immune system cytokine involved in the acute inflammatory response, have both been shown to affect cognition including executive functions. Moreover, IGF-1 and IL-6 have been shown to be antithetical in so far as chronically increased IL-6 has been associated with reduced IGF-1 levels, a relationship that has been linked to age related morbidity. Further, physical activity and LCn3 have been shown to modulate levels of both IGF-1 and IL-6. Thus, it is possible that the cognitive enhancing effects of LCn3, physical activity or their interaction are mediated by changes in the balance between IL-6 and IGF-1. Partial and non-parametric correlations were conducted in a subsample of participants from Study 2a (n = 13) to explore these relationships. Correlations of interest did not reach significance; however, the coefficients were quite large for several relationships suggesting studies with larger samples may be warranted. In summary, the current program of research found some evidence supporting an interaction between EPA, not DHA, and higher energy expenditure via physical activity in differentiating between older adults with and without MCI. However, a RCT examining executive function in older adults with MCI found no support for increasing EPA or DHA while maintaining current levels of energy expenditure. Furthermore, a cross-sectional study examining executive function in older adults without MCI found no support for better executive function performance as a function of increased EPA or DHA consumption, greater energy expenditure via physical activity or an interaction between physical activity and either EPA or DHA. Finally, an examination of endocrine and immune system biomarkers revealed promising relationships in terms of executive function in non-MCI older adults particularly with respect to LCn3 and physical activity. Taken together, these findings demonstrate a potential benefit of increasing physical activity and LCn3 consumption, particularly EPA, in mitigating the risk of developing MCI. In contrast, no support was found for a benefit to executive function as a result of increased physical activity, LCn3 consumption or an interaction between physical activity and LCn3, in participants with and without MCI. These results are discussed with reference to previous findings in the literature including possible limitations and opportunities for future research.
Resumo:
Over a seven-year period, Mark Radvan directed a suite of children’s theatre productions adapted from the original Tashi stories by Australian writers Anna and Barbara Fienberg. The Tashi Project’s repertoire of plays performed to over 40,000 children aged between 3 and 10 years old, and their carers, in seasons at the Out of the Box Festival, at Brisbane Powerhouse and in venues across Australia in two interstate tours in 2009 and 2010. The project investigated how best to combine an exploration of theatrical forms and conventions, with a performance style evolved in a specially developed training program and a deliberate positioning of young children as audiences capable of sophisticated readings of action, symbol, theme and character. The results of this project show that when brought into appropriate relationship with the theatre artists, young children aged 3-5 can engage with sophisticated narrative forms, and with the right contextual framing they enjoy heightened dramatic and emotional tension, bringing to the event sustained and highly engaged concentration. Older children aged 6-10 also bring sustained and heightened engagement to the same stories, providing that other more sophisticated dramatic elements are woven into the construction of the performances, such as character, theme and style.
Resumo:
We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(PO4)(OH)3⋅3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm−1 assigned to the PO43- ν1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm−1 with bands of lesser intensity at 1110, 1179 and 1206 cm−1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite.