383 resultados para structural models
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.
Resumo:
This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.
Resumo:
The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.
Resumo:
Toll plazas are particularly susceptible to build-ups of vehicle-emitted pollutants because vehicles pass through in low gear. To look at this, three-dimensional computational fluid dynamics simulations of pollutant dispersion are used on the standard k e turbulence model. The effects of wind speed, wind direction and topography on pollutant dispersion were discussed. The Wuzhuang toll plaza on the Hefei-Nanjing expressway is considered, and the effects of the retaining walls along both sides of the plaza on pollutant dispersion is analysed. There are greater pollutant concentrations near the tollbooths as the angle between the direction of the wind and traffic increases implying that retaining walls impede dispersion. The slope of the walls has little influence on the variations in pollutant concentration.
Resumo:
Sponsorship is increasingly important in a firm’s communication mix. Research to date has focused on the impact of sponsorship on brand awareness and its subsequent consequences for image congruency and consumer attitudes towards sponsors’ brands. A lesser studied area is the effect of sponsorship on consumers’ purchase intentions and behaviours. We argue that existing models of sponsorship driven purchase behaviour fail to account for affective commitment, which mediates relationship between affiliation with the team and social identification with the team. We propose a modified framework describing the effect of sponsorship on purchase intentions in the context of low and high performing sports teams. The framework is tested using structural equations modelling; employing PLS estimation and data collected via online survey of AFL chat room participants. Results confirm the role of affective commitment in sport sponsorship purchase intentions and indicate that team success has a significant influence on fans’ purchase behaviours.
Resumo:
Differential axial shortening, distortion and deformation in high rise buildings is a serious concern. They are caused by three time dependent modes of volume change; “shrinkage”, “creep” and “elastic shortening” that takes place in every concrete element during and after construction. Vertical concrete components in a high rise building are sized and designed based on their strength demand to carry gravity and lateral loads. Therefore, columns and walls are sized, shaped and reinforced differently with varying concrete grades and volume to surface area ratios. These structural components may be subjected to the detrimental effects of differential axial shortening that escalates with increasing the height of buildings. This can have an adverse impact on other structural and non-structural elements. Limited procedures are available to quantify axial shortening, and the results obtained from them differ because each procedure is based on various assumptions and limited to few parameters. All these prompt to a need to develop an accurate numerical procedure to quantify the axial shortening of concrete buildings taking into account the important time varying functions of (i) construction sequence (ii) Young’s Modulus and (iii) creep and shrinkage models associated with reinforced concrete. General assumptions are refined to minimize variability of creep and shrinkage parameters to improve accuracy of the results. Finite element techniques are used in the procedure that employs time history analysis along with compression only elements to simulate staged construction behaviour. This paper presents such a procedure and illustrates it through an example. Keywords: Differential Axial Shortening, Concrete Buildings, Creep and Shrinkage, Construction Sequence, Finite Element Method.
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.
Resumo:
A study was conducted to examine the factorial validity of the Flinders Decision Making Questionnaire (Mann, 1982), a 31-item self-report inventory designed to measure tendencies to use three major coping patterns identified in the conflict theory of decision making (Janis and Mann, 1977): vigilance, hypervigilance, and defensive avoidance (procrastination, buck-passing, and rationalization). A sample of 2051 university students, comprising samples from Australia (n=262), New Zealand (n=260), the USA (n=475), Japan (n=359), Hong Kong (n=281) and Taiwan (n=414) was administered the DMQ. Factorial validity of the instrument was tested by confirmatory factor analysis with LISREL. Five different substantive models, representing different structural relationships between the decision-coping patterns had unsatisfactory fit to the data and could not be validated. A shortened instrument, containing 22 items, yielded a revised model comprising four identifiable factors-vigilance, hypervigilance, buck-passing, and procrastination. The revised model had adequate fit with data for each country sample and for the total sample, and was confirmed. It is recommended that the 22-item instrument, named the Melbourne DMQ, replace the Flinders DMQ for measurement of decision-coping patterns.
Resumo:
Two studies were conducted to investigate empirical support for two models relating to the development of self-concepts and self-esteem in upper-primary school children. The first study investigated the social learning model by examining the relationship between mothers' and fathers' self-reported self-concepts and self-esteem and the self-reported self-concepts and self-esteem of their children. The second study investigated the symbolic interaction model by examining the relationship between children's perception of the frequency of positive and negative statements made by parents and their self-reported self-concepts and self-esteem. The results of these studies suggested that what parents say to their children and how they interact with them is more closely related to their children's self-perceptions than the role of modelling parental attitudes and behaviours. The findings highlight the benefits of parents talking positively to their children.
Resumo:
With increasingly complex engineering assets and tight economic requirements, asset reliability becomes more crucial in Engineering Asset Management (EAM). Improving the reliability of systems has always been a major aim of EAM. Reliability assessment using degradation data has become a significant approach to evaluate the reliability and safety of critical systems. Degradation data often provide more information than failure time data for assessing reliability and predicting the remnant life of systems. In general, degradation is the reduction in performance, reliability, and life span of assets. Many failure mechanisms can be traced to an underlying degradation process. Degradation phenomenon is a kind of stochastic process; therefore, it could be modelled in several approaches. Degradation modelling techniques have generated a great amount of research in reliability field. While degradation models play a significant role in reliability analysis, there are few review papers on that. This paper presents a review of the existing literature on commonly used degradation models in reliability analysis. The current research and developments in degradation models are reviewed and summarised in this paper. This study synthesises these models and classifies them in certain groups. Additionally, it attempts to identify the merits, limitations, and applications of each model. It provides potential applications of these degradation models in asset health and reliability prediction.
Resumo:
Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Suitable mathematical models that are capable of predicting Time-to-Failure (TTF) and the probability of failure in future time are essential. In traditional reliability models, the lifetime of assets is estimated using failure time data. However, in most real-life situations and industry applications, the lifetime of assets is influenced by different risk factors, which are called covariates. The fundamental notion in reliability theory is the failure time of a system and its covariates. These covariates change stochastically and may influence and/or indicate the failure time. Research shows that many statistical models have been developed to estimate the hazard of assets or individuals with covariates. An extensive amount of literature on hazard models with covariates (also termed covariate models), including theory and practical applications, has emerged. This paper is a state-of-the-art review of the existing literature on these covariate models in both the reliability and biomedical fields. One of the major purposes of this expository paper is to synthesise these models from both industrial reliability and biomedical fields and then contextually group them into non-parametric and semi-parametric models. Comments on their merits and limitations are also presented. Another main purpose of this paper is to comprehensively review and summarise the current research on the development of the covariate models so as to facilitate the application of more covariate modelling techniques into prognostics and asset health management.
Resumo:
This research examines how men react to male models in print advertisements. In two experiments, we show that the gender identity of men influences their responses to advertisements featuring a masculine, feminine, or androgynous male model. In addition, we explore the extent to which men feel they will be classified by others as similar to the model as a mechanism for these effects. Specifically, masculine men respond most favorably to masculine models and are negative toward feminine models. In contrast, feminine men prefer feminine models when their private self is salient. Yet in a collective context, they prefer masculine models.These experiments shed light on how gender identity and self-construal influence male evaluations and illustrate the social pressure on men to endorse traditional masculine portrayals. We also present implications for advertising practice.
Resumo:
In two experiments, we show that the beliefs women have about the controllability of their weight (i.e., weight locus of control) influences their responses to advertisements featuring a larger-sized female model or a slim female model. Further, we examine self-referencing as a mechanism for these effects. Specifically, people who believe they can control their weight (“internals”), respond most favorably to slim models in advertising, and this favorable response is mediated by self-referencing. In contrast, people who feel powerless about their weight (“externals”), self-reference larger-sized models, but only prefer larger-sized models when the advertisement is for a non-fattening product. For fattening products, they exhibit a similar preference for larger-sized models and slim models. Together, these experiments shed light on the effect of model body size and the role of weight locus of control in influencing consumer attitudes.
Resumo:
A configurable process model provides a consolidated view of a family of business processes. It promotes the reuse of proven practices by providing analysts with a generic modelling artifact from which to derive individual process models. Unfortunately, the scope of existing notations for configurable process modelling is restricted, thus hindering their applicability. Specifically, these notations focus on capturing tasks and control-flow dependencies, neglecting equally important ingredients of business processes such as data and resources. This research fills this gap by proposing a configurable process modelling notation incorporating features for capturing resources, data and physical objects involved in the performance of tasks. The proposal has been implemented in a toolset that assists analysts during the configuration phase and guarantees the correctness of the resulting process models. The approach has been validated by means of a case study from the film industry.
Resumo:
While LRD (living donation to a genetically/emotionally related recipient) is well established in Australia, LAD (living anonymous donation to a stranger) is rare. Given the increasing use of LAD overseas, Australia may likely follow suit. Understanding the determinants of people’s willingness for LAD is essential but infrequently studied in Australia. Consequently, we compared the determinants of people’s LRD and LAD willingness, and assessed whether these determinants differed according to type of living donation. We surveyed 487 health students about their LRD and LAD willingness, attitudes, identity, prior experience with blood and organ donation, deceased donation preference, and demographics. We used Structural Equation Modelling (SEM) to identify the determinants of willingness for LRD and LAD and paired sample t-tests to examine differences in LRD and LAD attitudes, identity, and willingness. Mean differences in willingness (LRD 5.93, LAD 3.92), attitudes (LRD 6.43, LAD 5.53), and identity (LRD 5.69, LAD 3.58) were statistically significant. Revised SEM models provided a good fit to the data (LRD: x2 (41) = 67.67, p = 0.005, CFI = 0.96, RMSEA = 0.04; LAD: x2 (40) = 79.64, p < 0.001, CFI = 0.95, RMSEA = 0.05) and explained 45% and 54% of the variation in LRD and LAD willingness, respectively. Four common determinants of LRD and LAD willingness emerged: identity, attitude, past blood donation, and knowing a deceased donor. Religious affiliation and deceased donation preference predicted LAD willingness also. Identifying similarities and differences in these determinants can inform future efforts aimed at understanding people’s LRD and LAD willingness and the evaluation of potential living donor motives. Notably, this study highlights the importance of people’s identification as a living donor as a motive underlying their willingness to donate their organs while living.