361 resultados para software asset creation
Resumo:
This chapter explores the role of the built environment in the creation, cultivation and acquisition of a knowledge base by people populating the urban landscape. It examines McDonald’s restaurants as a way to comprehend the relevance of the physical design in the diffusion of codified and tacit knowledge at an everyday level. Through an examination of space at a localised level, this chapter describes the synergies of space and the significance of this relationship in navigating the global landscape.
Resumo:
Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.
Resumo:
Efficient state asset management is crucial for governments as they facilitate the fulfillment of their public functions, which include the provision of essential services and other public administration support. In recent times economies internationally and particularly in South east Asia, have displayed increased recognition of the importance of efficiencies across state asset management law, policies and practice. This has been exemplified by a surge in notable instances of reform in state asset management. A prominent theme in this phenomenon is the consideration of governance principles within the re-conceptualization of state asset management law and related policy, with many countries recognizing variability in the quality of asset governance and opportunities for profit as being critical factors. This issue is very current in Indonesia where a major reform process in this area has been confirmed by the establishment of a new Directorate of State Asset Management. The incumbent Director-General of State Asset Management has confirmed a re-emphasis on adherence to governance principles within applicable state asset management law and policy reform. This paper reviews aspects of the challenge of reviewing and reforming Indonesian practice within state asset management law and policy specifically related to public housing, public buildings, parklands, and vacant land. A critical issue in beginning this review is how Indonesia currently conceptualizes the notion of asset governance and how this meaning is embodied in recent changes in law and policy and importantly in options for future change. This paper discusses the potential complexities uniquely Indonesian characteristics such as decentralisation and regional autonomy regime, political history, and bureaucratic culture
Resumo:
Reliable infrastructure assets impact significantly on quality of life and provide a stable foundation for economic growth and competitiveness. Decisions about the way assets are managed are of utmost importance in achieving this. Timely renewal of infrastructure assets supports reliability and maximum utilisation of infrastructure and enables business and community to grow and prosper. This research initially examined a framework for asset management decisions and then focused on asset renewal optimisation and renewal engineering optimisation in depth. This study had four primary objectives. The first was to develop a new Asset Management Decision Framework (AMDF) for identifying and classifying asset management decisions. The AMDF was developed by applying multi-criteria decision theory, classical management theory and life cycle management. The AMDF is an original and innovative contribution to asset management in that: · it is the first framework to provide guidance for developing asset management decision criteria based on fundamental business objectives; · it is the first framework to provide a decision context identification and analysis process for asset management decisions; and · it is the only comprehensive listing of asset management decision types developed from first principles. The second objective of this research was to develop a novel multi-attribute Asset Renewal Decision Model (ARDM) that takes account of financial, customer service, health and safety, environmental and socio-economic objectives. The unique feature of this ARDM is that it is the only model to optimise timing of asset renewal with respect to fundamental business objectives. The third objective of this research was to develop a novel Renewal Engineering Decision Model (REDM) that uses multiple criteria to determine the optimal timing for renewal engineering. The unique features of this model are that: · it is a novel extension to existing real options valuation models in that it uses overall utility rather than present value of cash flows to model engineering value; and · it is the only REDM that optimises timing of renewal engineering with respect to fundamental business objectives; The final objective was to develop and validate an Asset Renewal Engineering Philosophy (AREP) consisting of three principles of asset renewal engineering. The principles were validated using a novel application of real options theory. The AREP is the only renewal engineering philosophy in existence. The original contributions of this research are expected to enrich the body of knowledge in asset management through effectively addressing the need for an asset management decision framework, asset renewal and renewal engineering optimisation based on fundamental business objectives and a novel renewal engineering philosophy.
Resumo:
Road safety is a major concern worldwide. Road safety will improve as road conditions and their effects on crashes are continually investigated. This paper proposes to use the capability of data mining to include the greater set of road variables for all available crashes with skid resistance values across the Queensland state main road network in order to understand the relationships among crash, traffic and road variables. This paper presents a data mining based methodology for the road asset management data to find out the various road properties that contribute unduly to crashes. The models demonstrate high levels of accuracy in predicting crashes in roads when various road properties are included. This paper presents the findings of these models to show the relationships among skid resistance, crashes, crash characteristics and other road characteristics such as seal type, seal age, road type, texture depth, lane count, pavement width, rutting, speed limit, traffic rates intersections, traffic signage and road design and so on.
Resumo:
Longitudinal panel studies of large, random samples of business start-ups captured at the pre-operational stage allow researchers to address core issues for entrepreneurship research, namely, the processes of creation of new business ventures as well as their antecedents and outcomes. Here, we perform a methods-orientated review of all 83 journal articles that have used this type of data set, our purpose being to assist users of current data sets as well as designers of new projects in making the best use of this innovative research approach. Our review reveals a number of methods issues that are largely particular to this type of research. We conclude that amidst exemplary contributions, much of the reviewed research has not adequately managed these methods challenges, nor has it made use of the full potential of this new research approach. Specifically, we identify and suggest remedies for context-specific and interrelated methods challenges relating to sample definition, choice of level of analysis, operationalization and conceptualization, use of longitudinal data and dealing with various types of problematic heterogeneity. In addition, we note that future research can make further strides towards full utilization of the advantages of the research approach through better matching (from either direction) between theories and the phenomena captured in the data, and by addressing some under-explored research questions for which the approach may be particularly fruitful.
Resumo:
What predicts a person's venture creation success over the course of the career, such as making progress in the venture creation process and multiple successful venture creations? Applying a life span approach of human development, this study examined the effect of early entrepreneurial competence in adolescence, which was gathered retrospectively by means of the Life History Calendar method. Human and social capitals during the founding process were investigated as mediators between adolescent competence and performance. Findings were derived from regression analyses on the basis of prospective and retrospective data from two independent samples (N = 88 nascent founders; N = 148 founders). We found that early entrepreneurial competence in adolescence had a positive effect on making progress in the venture creation process. Nascent founders' current human and social capital also had a direct effect, but it did not mediate the effect of early competences. Finally, the data revealed that early entrepreneurial competence in adolescence positively predicted habitual entrepreneurship (multiple successful venture creations) exhibited over a longer period of the individual career (specifically, 18 years). In line with the results from prospective longitudinal studies on early precursors of entrepreneurship, our findings underscore the long neglected importance of adolescent development in the explanation of entrepreneurial performance during the subsequent working life.
Resumo:
This paper considers the problem of building a software architecture for a human-robot team. The objective of the team is to build a multi-attribute map of the world by performing information fusion. A decentralized approach to information fusion is adopted to achieve the system properties of scalability and survivability. Decentralization imposes constraints on the design of the architecture and its implementation. We show how a Component-Based Software Engineering approach can address these constraints. The architecture is implemented using Orca – a component-based software framework for robotic systems. Experimental results from a deployed system comprised of an unmanned air vehicle, a ground vehicle, and two human operators are presented. A section on the lessons learned is included which may be applicable to other distributed systems with complex algorithms. We also compare Orca to the Player software framework in the context of distributed systems.
Resumo:
Recent research has begun to address and even compare nascent entrepreneurship and nascent corporate entrepreneurship. An opportunity based view holds great potential to integrate both streams of research, but also presents challenges in how we define corporate entrepreneurship. We extend (corporate) entrepreneurship literature to the opportunity identification phase by providing a framework to classify different types of corporate entrepreneurship. Through analysis of a large dataset on nascent (corporate) entrepreneurship (PSEDII) we show that these corporate entrepreneurs differ largely from each other in terms of human capital. Prior studies have indicated that independent and corporate entrepreneurs pursue different types of opportunities and utilize different strategies. Our findings from the opportunity identification phase challenge those differences and seem to indicate a difference between the opportunities corporate entrepreneurs identify versus the opportunities they exploit.
Resumo:
The emerging theory of ‘bricolage’ as a resource behaviour represents an attempt to address the central entrepreneurship research problem of making systematic sense of entrepreneurs that sometimes manage to create significant new economic activity under what appears to be severe resource constraints (Baker & Nelson 2005). However, despite growing interest in bricolage there is little large scale empirical evidence about the effectiveness and outcomes of using bricolage processes while developing innovative outcomes in nascent and young firms. In this research we test bricolage using different forms of innovation using data from the Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) project. Our results indicate overall positive results of bricolage with all forms of innovativeness. A discussion of the results and recommended future research is provided.
Resumo:
Infrastructure capacity management is the process of ensuring optimal provision of infrastructure assets to support business operations. Effectiveness in this process will enable infrastructure asset owners and its stakeholders to receive full value on their investment. Management research has shown that an organisation can only achieve business value when it has the right capabilities. This paradigm can also be applied to infrastructure capacity management. With competing needs for limited organisation resources, the challenge for infrastructure organisations is to identify and invest their limited resources to develop the right capabilities in the management of their infrastructure capacity. Using a multiple case study approach, the challenges faced in the management of infrastructure asset capacity and the approaches that can be adopted to overcome these challenges were explored. Conceptualising the approaches adopted by the case participants, the findings suggest that infrastructure organisations must strengthen their stakeholder connectivity capability in order to effectively manage the capacity of their infrastructure assets.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.
Resumo:
Realisation of the importance of real estate asset strategic decision making has inspired a burgeoning corporate real estate management (CREM) literature. Much of this criticises the poor alignment between strategic business direction and the ‘enabling’ physical environment. This is based on the understanding that corporate real estate assets represent the physical resource base that supports business, and can either complement or impede that business. In the hope of resolving this problem, CRE authors advocate a deeper integration of strategic and corporate real estate decisions. However this recommendation appears to be based on a relatively simplistic theoretical approach to organization where decision-making tends to be viewed as a rationally managed event rather than a complex process. Defining decision making as an isolated event has led to an uncritical acceptance of two basic assumptions: ubiquitous, conflict-free rationality and profit maximisation. These assumptions have encouraged prescriptive solutions that clearly lack the sophistication necessary to come to grips with the complexity of the built and organizational environment. Alternatively, approaching CREM decision making from a more sophisticated perspective, such as that of the “Carnegie School”, leads to conceptualise it as a ‘process’, creating room for bounded rationality, multiple goals, intra-organizational conflict, environmental matching, uncertainty avoidance and problem searching. It is reasonable to expect that such an approach will result in a better understanding of the organizational context, which will facilitate the creation of organizational objectives, assist with the formation of strategies, and ultimately will aid decision.
Resumo:
In asset intensive industries such as mining, oil & gas, utilities etc. most of the capital expenditure happens on acquiring engineering assets. Process of acquiring assets is called as “Procurement” or “Acquisition”. An asset procurement decision should be taken in consideration with the installation, commissioning, operational, maintenance and disposal needs of an asset or spare. However, such cross-functional collaboration and communication does not appear to happen between engineering, maintenance, warehousing and procurement functions in many asset intensive industries. Acquisition planning and execution are two distinct parts of asset acquisition process. Acquisition planning or procurement planning is responsible for determining exactly what is required to be purchased. It is important that an asset acquisition decision is the result of cross-functional decision making process. An acquisition decision leads to a formal purchase order. Most costly asset decisions occur even before they are acquired. Therefore, acquisition decision should be an outcome of an integrated planning & decision making process. Asset intensive organizations both, Government and non Government in Australia spent AUD 102.5 Billion on asset acquisition in year 2008-09. There is widespread evidence of many assets and spare not being used or utilized and in the end are written off. This clearly shows that many organizations end up buying assets or spares which were not required or non-conforming to the needs of user functions. It is due the fact that strategic and software driven procurement process do not consider all the requirements from various functions within the organization which contribute to the operation and maintenance of the asset over its life cycle. There is a lot of research done on how to implement an effective procurement process. There are numerous software solutions available for executing a procurement process. However, not much research is done on how to arrive at a cross functional procurement planning process. It is also important to link procurement planning process to procurement execution process. This research will discuss ““Acquisition Engineering Model” (AEM) framework, which aims at assisting acquisition decision making based on various criteria to satisfy cross-functional organizational requirements. Acquisition Engineering Model (AEM) will consider inputs from corporate asset management strategy, production management, maintenance management, warehousing, finance and HSE. Therefore, it is essential that the multi-criteria driven acquisition planning process is carried out and its output is fed to the asset acquisition (procurement execution) process. An effective procurement decision making framework to perform acquisition planning which considers various functional criteria will be discussed in this paper.