170 resultados para query
Resumo:
The use of ‘topic’ concepts has shown improved search performance, given a query, by bringing together relevant documents which use different terms to describe a higher level concept. In this paper, we propose a method for discovering and utilizing concepts in indexing and search for a domain specific document collection being utilized in industry. This approach differs from others in that we only collect focused concepts to build the concept space and that instead of turning a user’s query into a concept based query, we experiment with different techniques of combining the original query with a concept query. We apply the proposed approach to a real-world document collection and the results show that in this scenario the use of concept knowledge at index and search can improve the relevancy of results.
Resumo:
For people with cognitive disabilities, technology is more often thought of as a support mechanism, rather than a source of division that may require intervention to equalize access across the cognitive spectrum. This paper presents a first attempt at formalizing the digital gap created by the generalization of search engines. This was achieved through the development of a mapping of cognitive abilities required by users to execute low- level tasks during a standard Web search task. The mapping demonstrates how critical these abilities are to successfully use search engines with an adequate level of independence. It will lead to a set of design guidelines for search engine interfaces that will allow for the engagement of users of all abilities, and also, more importantly, in search algorithms such as query suggestion and measure of relevance (i.e. ranking).
Resumo:
In our large library of annotated environmental recordings of animal vocalizations, searching annotations by label can return thousands of results. We propose a heat map of aggregated annotation time and frequency bounds, maintaining the shape of the annotations as they appear on the spectrogram. This compactly displays the distribution of annotation bounds for the user's query, and allows them to easily identify unusual annotations. Key to this is allowing zero values on the map to be differentiated from areas where there are single annotations.
Resumo:
It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to relate and easy to understand. However such queries are not easily utilised within intelligent surveillance systems as they are difficult to transform into a representation that can be searched for automatically in large camera networks. In this paper we propose a novel approach that transforms such a semantic query into an avatar that is searchable within a video stream, and demonstrate state-of-the-art performance for locating a subject in video based on a description.
Resumo:
Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).
Resumo:
Bitboards allow the efficient encoding of games for computer play and the application of fast bitwiseparallel algorithms for common game-related operations. This article describes: (1) a selection of bitboard techniques including an introduction to bitboards and bitwise operations; (2) a classification scheme that distinguishes filter, query and update methods, and; (3) a sampling of bitboard algorithms for a range of games other than chess, with notes on their performance and practical application.
Resumo:
It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to communicate and easy to understand. However such queries are not easily utilised within intelligent video surveillance systems, as they are difficult to transform into a representation that can be utilised by computer vision algorithms. In this paper we propose a novel approach that transforms such a semantic query into an avatar in the form of a channel representation that is searchable within a video stream. We show how spatial, colour and prior information (person shape) can be incorporated into the channel representation to locate a target using a particle-filter like approach. We demonstrate state-of-the-art performance for locating a subject in video based on a description, achieving a relative performance improvement of 46.7% over the baseline. We also apply this approach to person re-detection, and show that the approach can be used to re-detect a person in a video steam without the use of person detection.
Resumo:
Broad knowledge is required when a business process is modeled by a business analyst. We argue that existing Business Process Management methodologies do not consider business goals at the appropriate level. In this paper we present an approach to integrate business goals and business process models. We design a Business Goal Ontology for modeling business goals. Furthermore, we devise a modeling pattern for linking the goals to process models and show how the ontology can be used in query answering. In this way, we integrate the intentional perspective into our business process ontology framework, enriching the process description and enabling new types of business process analysis. © 2008 IEEE.
Resumo:
Automated digital recordings are useful for large-scale temporal and spatial environmental monitoring. An important research effort has been the automated classification of calling bird species. In this paper we examine a related task, retrieval of birdcalls from a database of audio recordings, similar to a user supplied query call. Such a retrieval task can sometimes be more useful than an automated classifier. We compare three approaches to similarity-based birdcall retrieval using spectral ridge features and two kinds of gradient features, structure tensor and the histogram of oriented gradients. The retrieval accuracy of our spectral ridge method is 94% compared to 82% for the structure tensor method and 90% for the histogram of gradients method. Additionally, this approach potentially offers a more compact representation and is more computationally efficient.
Resumo:
This paper demonstrates the integration and usage of Process Query Language (PQL), a special-purpose programming language for querying large collections of process models based on process model behavior, in the Apromore open-source process model repository. The resulting environment provides a unique user experience when carrying out process model querying tasks. The tool is useful for researchers and practitioners working with large process model collections, and specifically for those with an interest in model retrieval tasks as part of process compliance, process redesign and process standardization initiatives.
Resumo:
Acoustic recordings of the environment provide an effective means to monitor bird species diversity. To facilitate exploration of acoustic recordings, we describe a content-based birdcall retrieval algorithm. A query birdcall is a region of spectrogram bounded by frequency and time. Retrieval depends on a similarity measure derived from the orientation and distribution of spectral ridges. The spectral ridge detection method caters for a broad range of birdcall structures. In this paper, we extend previous work by incorporating a spectrogram scaling step in order to improve the detection of spectral ridges. Compared to an existing approach based on MFCC features, our feature representation achieves better retrieval performance for multiple bird species in noisy recordings.
Resumo:
In this paper the issue of finding uncertainty intervals for queries in a Bayesian Network is reconsidered. The investigation focuses on Bayesian Nets with discrete nodes and finite populations. An earlier asymptotic approach is compared with a simulation-based approach, together with further alternatives, one based on a single sample of the Bayesian Net of a particular finite population size, and another which uses expected population sizes together with exact probabilities. We conclude that a query of a Bayesian Net should be expressed as a probability embedded in an uncertainty interval. Based on an investigation of two Bayesian Net structures, the preferred method is the simulation method. However, both the single sample method and the expected sample size methods may be useful and are simpler to compute. Any method at all is more useful than none, when assessing a Bayesian Net under development, or when drawing conclusions from an ‘expert’ system.
Resumo:
In the field of face recognition, sparse representation (SR) has received considerable attention during the past few years, with a focus on holistic descriptors in closed-set identification applications. The underlying assumption in such SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such an assumption is easily violated in the face verification scenario, where the task is to determine if two faces (where one or both have not been seen before) belong to the same person. In this study, the authors propose an alternative approach to SR-based face verification, where SR encoding is performed on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which then form an overall face descriptor. Owing to the deliberate loss of spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment and various image deformations. Within the proposed framework, they evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN) and an implicit probabilistic technique based on Gaussian mixture models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, on both the traditional closed-set identification task and the more applicable face verification task. The experiments also show that l1-minimisation-based encoding has a considerably higher computational cost when compared with SANN-based and probabilistic encoding, but leads to higher recognition rates.
Resumo:
This article focusses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning.
Resumo:
Aim: Opioid replacement therapy (ORT) is an established therapy for a patient group that has been associated with nutrition-related comorbidities. This paper aims to assess the nutritional intake and supplementation in ORT patients, determine the extent of nutritional/dietary advice supplied to ORT patients and to briefly examine patients' perception of pharmacists' provision of nutritional advice. Methods: The nutritional intake of ORT patients receiving treatment in community pharmacies within the Australian Capital Territory was assessed via a 24-hour recall survey. Food intake data were analysed via nutrient analysis software and compared with Australian Nutrition Reference Values and the nutrient intakes of the Australian population. Patients were surveyed to determine supplement use and perceptions of nutritional advice gained by pharmacists. Results: Potential insufficient intake of various macronutrients and micronutrients was observed in both sexes. Less than 25 of patients recorded supplement use. Fifteen percent of males and 21 of females stated that they had approached a pharmacist with a nutrition-related query. All patients who received nutritional advice followed the advice. Conclusions: ORT patients dosing at community pharmacies appear to have poor nutritional intake. ORT patients appear to be receptive to pharmacist's advice. Community pharmacists can potentially increase the beneficial health outcomes in this population through the proactive supply of accurate nutritional advice.