266 resultados para optimal route finding
Resumo:
In the decision-making of multi-area ATC (Available Transfer Capacity) in electricity market environment, the existing resources of transmission network should be optimally dispatched and coordinately employed on the premise that the secure system operation is maintained and risk associated is controllable. The non-sequential Monte Carlo simulation is used to determine the ATC probability density distribution of specified areas under the influence of several uncertainty factors, based on which, a coordinated probabilistic optimal decision-making model with the maximal risk benefit as its objective is developed for multi-area ATC. The NSGA-II is applied to calculate the ATC of each area, which considers the risk cost caused by relevant uncertainty factors and the synchronous coordination among areas. The essential characteristics of the developed model and the employed algorithm are illustrated by the example of IEEE 118-bus test system. Simulative result shows that, the risk of multi-area ATC decision-making is influenced by the uncertainties in power system operation and the relative importance degrees of different areas.
Resumo:
A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.
Resumo:
Due to their small collecting volume diodes are commonly used in small field dosimetry. However the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm . The metric D_(w,Q)/D_(Det,Q) used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting D_(w,Q)/D_(Det,Q) as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which D_(w,Q)/D_(Det,Q) was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3 mm, 1.15 mm and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k_(Q_clin 〖,Q〗_msr)^(f_clin 〖,f〗_msr ) was equal to unity to within statistical uncertainty (0.5 %) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The results for the unclosed silicon chip show that an ideal small field dosimetry diode could be created by using a silicon chip with a small amount of air above it.
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.
Resumo:
The cardiac catheterisation laboratory (CCL) is a specialised medical radiology facility where both chronic-stable and life-threatening cardiovascular illness is evaluated and treated. Although there are many potential sources of discomfort and distress associated with procedures performed in the CCL, a general anaesthetic is not usually required. For this reason, an anaesthetist is not routinely assigned to the CCL. Instead, to manage pain, discomfort and anxiety during the procedure, nurses administer a combination of sedative and analgesic medications according to direction from the cardiologist performing the procedure. This practice is referred to as nurse-administered procedural sedation and analgesia (PSA). While anecdotal evidence suggested that nurse-administered PSA was commonly used in the CCL, it was clear from the limited information available that current nurse-led PSA administration and monitoring practices varied and that there was contention around some aspects of practice including the type of medications that were suitable to be used and the depth of sedation that could be safely induced without an anaesthetist present. The overall aim of the program of research presented in this thesis was to establish an evidence base for nurse-led sedation practices in the CCL context. A sequential mixed methods design was used over three phases. The objective of the first phase was to appraise the existing evidence for nurse-administered PSA in the CCL. Two studies were conducted. The first study was an integrative review of empirical research studies and clinical practice guidelines focused on nurse-administered PSA in the CCL as well as in other similar procedural settings. This was the first review to systematically appraise the available evidence supporting the use of nurse-administered PSA in the CCL. A major finding was that, overall, nurse-administered PSA in the CCL was generally deemed to be safe. However, it was concluded from the analysis of the studies and the guidelines that were included in the review, that the management of sedation in the CCL was impacted by a variety of contextual factors including local hospital policy, workforce constraints and cardiologists’ preferences for the type of sedation used. The second study in the first phase was conducted to identify a sedation scale that could be used to monitor level of sedation during nurse-administered PSA in the CCL. It involved a structured literature review and psychometric analysis of scale properties. However, only one scale was found that was developed specifically for the CCL, which had not undergone psychometric testing. Several weaknesses were identified in its item structure. Other sedation scales that were identified were developed for the ICU. Although these scales have demonstrated validity and reliability in the ICU, weaknesses in their item structure precluded their use in the CCL. As findings indicated that no existing sedation scale should be applied to practice in the CCL, recommendations for the development and psychometric testing of a new sedation scale were developed. The objective of the second phase of the program of research was to explore current practice. Three studies were conducted in this phase using both quantitative and qualitative research methods. The first was a qualitative explorative study of nurses’ perceptions of the issues and challenges associated with nurse-administered PSA in the CCL. Major themes emerged from analysis of the qualitative data regarding the lack of access to anaesthetists, the limitations of sedative medications, the barriers to effective patient monitoring and the impact that the increasing complexity of procedures has on patients' sedation requirements. The second study in Phase Two was a cross-sectional survey of nurse-administered PSA practice in Australian and New Zealand CCLs. This was the first study to quantify the frequency that nurse-administered PSA was used in the CCL setting and to characterise associated nursing practices. It was found that nearly all CCLs utilise nurse-administered PSA (94%). Of note, by characterising nurse-administered PSA in Australian and New Zealand CCLs, several strategies to improve practice, such as setting up protocols for patient monitoring and establishing comprehensive PSA education for CCL nurses, were identified. The third study in Phase Two was a matched case-control study of risk factors for impaired respiratory function during nurse-administered PSA in the CCL setting. Patients with acute illness were found to be nearly twice as likely to experience impaired respiratory function during nurse-administered PSA (OR=1.78; 95%CI=1.19-2.67; p=0.005). These significant findings can now be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered PSA in the CCL. The objective of the third and final phase of the program of research was to develop recommendations for practice. To achieve this objective, a synthesis of findings from the previous phases of the program of research informed a modified Delphi study, which was conducted to develop a set of clinical practice guidelines for nurse-administered PSA in the CCL. The clinical practice guidelines that were developed set current best practice standards for pre-procedural patient assessment and risk screening practices as well as the intra and post-procedural patient monitoring practices that nurses who administer PSA in the CCL should undertake in order to deliver safe, evidence-based and consistent care to the many patients who undergo procedures in this setting. In summary, the mixed methods approach that was used clearly enabled the research objectives to be comprehensively addressed in an informed sequential manner, and, as a consequence, this thesis has generated a substantial amount of new knowledge to inform and support nurse-led sedation practice in the CCL context. However, a limitation of the research to note is that the comprehensive appraisal of the evidence conducted, combined with the guideline development process, highlighted that there were numerous deficiencies in the evidence base. As such, rather than being based on high-level evidence, many of the recommendations for practice were produced by consensus. For this reason, further research is required in order to ascertain which specific practices result in the most optimal patient and health service outcomes. Therefore, along with necessary guideline implementation and evaluation projects, post-doctoral research is planned to follow up on the research gaps identified, which are planned to form part of a continuing program of research in this field.
Resumo:
This paper is devoted to the analysis of career paths and employability. The state-of-the-art on this topic is rather poor in methodologies. Some authors propose distances well adapted to the data, but are limiting their analysis to hierarchical clustering. Other authors apply sophisticated methods, but only after paying the price of transforming the categorical data into continuous, via a factorial analysis. The latter approach has an important drawback since it makes a linear assumption on the data. We propose a new methodology, inspired from biology and adapted to career paths, combining optimal matching and self-organizing maps. A complete study on real-life data will illustrate our proposal.
Resumo:
A modified Delphi approach has been applied in this study to investigate best practice and to determine the factors that contribute to optimal selection of projects. There are various standards and practices that some may recognise as representing best practice in this area. Many of these have similar characteristics and this study has found no single best practice. The study identified the factors that contribute to the optimal selection of projects as: culture, process, knowledge of the business, knowledge of the work, education, experience, governance, risk awareness, selection of players, preconceptions, and time pressures. All these factors were found to be significant; to be appropriate to public sector organisations, private sector organisations and government owned corporations; and to have a strong linkage to research on strategic decision making. These factors can be consolidated into two underlying factors of organisation culture and leadership.
Resumo:
Lanthanum Strontium Manganate (LSM) powders were synthesized by six different routes, namely solid state reaction, drip pyrolysis, citrate, sol-gel, carbonate and oxalate co-precipitation. The LSM samples, produced by firing to 1000 °C for 5 h were then characterized by way of XRD, TPD's of oxygen, TPR and catalytic activity for a simple oxidation reaction, that of carbon monoxide to carbon dioxide. It was found that although the six samples had similar compositions and surface areas they performed quite differently during catalytic characterization. These observed differences correlated more closely to the mode of synthesis, than to the physical properties of the powders, or their impurity levels, indicating that the surface structures created by the different syntheses perform very differently under catalysis conditions. Co-precipitation and drip pyrolysis produced structures that were most efficient at facilitating oxidation type reactions.
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.
Resumo:
Network reconfiguration after complete blackout of a power system is an essential step for power system restoration. A new node importance evaluation method is presented based on the concept of regret, and maximisation of the average importance of a path is employed as the objective of finding the optimal restoration path. Then, a two-stage method is presented to optimise the network reconfiguration strategy. Specifically, the restoration sequence of generating units is first optimised so as to maximise the restored generation capacity, then the optimal restoration path is selected to restore the generating nodes concerned and the issues of selecting a serial or parallel restoration mode and the reconnecting failure of a transmission line are next considered. Both the restoration path selection and skeleton-network determination are implemented together in the proposed method, which overcomes the shortcoming of separate decision-making in the existing methods. Finally, the New England 10-unit 39-bus power system and the Guangzhou power system in South China are employed to demonstrate the basic features of the proposed method.
Resumo:
The use of immobilised TiO2 for the purification of polluted water streams introduces the necessity to evaluate the effect of mechanisms such as the transport of pollutants from the bulk of the liquid to the catalyst surface and the transport phenomena inside the porous film. Experimental results of the effects of film thickness on the observed reaction rate for both liquid-side and support-side illumination are here compared with the predictions of a one-dimensional mathematical model of the porous photocatalytic slab. Good agreement was observed between the experimentally obtained photodegradation of phenol and its by-products, and the corresponding model predictions. The results have confirmed that an optimal catalyst thickness exists and, for the films employed here, is 5 μm. Furthermore, the modelling results have highlighted the fact that porosity, together with the intrinsic reaction kinetics are the parameters controlling the photocatalytic activity of the film. The former by influencing transport phenomena and light absorption characteristics, the latter by naturally dictating the rate of reaction.
Resumo:
Road crashes contribute to a significant amount of child mortality and morbidity in Australia. In fact, passenger injuries contribute to the majority of child crash road trauma. A number of factors contribute to child injury and death in motor vehicles, including inappropriate seating position, inappropriate choice of restraint, and incorrect installation and use of child restraints. Prior to March 2010, child restraint legislation in Queensland only required children twelve months and younger to be seated in a properly adjusted and fastened child restraint. This legislation left older infants and young children potentially suboptimally protected. From March 2010, new legislation specified seating position and type of child restraint required, depending on the age of the child. This research was underpinned by the Health Belief Model (HBM), which explores health related behaviour, behaviour change, environmental factors influencing behaviour change (including legislative changes) and is flexible enough to be used in relation to parents' health practices for their children, rather than parent health directly. This thesis investigates the extent to which the changes to child restraint legislation have led parents in regional areas of Queensland to use appropriate restraint practices for their children and determines the extent to which the constructs of the HBM, parental perceptions, barriers and environmental factors contribute to the appropriateness of child seating and restraint use. Study One included three sets of observations taken in two regional cities of Queensland prior to the legislative amendment, during an educative period of six months, and after the enactment of the legislation. Each child's seating position and restraint type were recorded. Results showed that the proportion of children observed occupying the front seat decreased by 15.6 per cent with the announcement the legislation. There was no decrease in front seat use at the enactment of the legislation. The proportion of children observed using dedicated child restraints increased by 8.8 per cent with the announcement of the legislation when there was one child in the vehicle. Further, there was a 10.1 per cent increase in the proportion of children observed using a seat belt that fit with the announcement when there was one child in the vehicle and with the enactment of the legislation regardless of the number of children in the vehicle (21.8 per cent for one child, 39.7 per cent for two children and 40.2 per cent for three or more children). Study Two comprised initial intercept interviews, later followed up by telephone, with parents with children aged eight years and younger at the announcement and telephone interviews at the enactment of the legislation in one regional city in Queensland. Parents reported their child restraint practices, and opinions, knowledge and understanding of the requirements of the new legislation. Parent responses were analysed in terms of the constructs in the HBM. When asked which seating position their child 'usually' used, parents reported child front seat use was nil (0.0 per cent) and did not change with the enactment of the legislative amendment. However, when parents were asked whether they allowed children to use the front seat at some point within the six months prior to the interview, reported child front seat use was 7 (5.4 per cent) children at T2 and 10 (9.6 per cent) at T3. Reported use of age-appropriate child restraints did not increase with the enactment of the legislation (p = 0.77, ns). Parents reported restraint practices were classed as either appropriate or inappropriate. Parents who reported appropriate restraint practices were those whose children were sitting in optimal restraints and seating positions for their age according to the requirements of the legislation. Parents who reported inappropriate restraint practices were those who had one or more children who were suboptimally restrained or seated for their age according to the requirements of the legislation. Neither parents' perceptions about their susceptibility of being in a crash nor the likelihood of severity of child injury if involved in a crash yielded significant differences in the appropriateness of reported parent restraint practices over time with the enactment of the legislation. A trend in the data suggested parents perceived a benefit to using appropriate restraint practices was to avoid fines and demerit points. Over 75 per cent of parents who agreed that child restraints provide better protection for children than an adult seat belt reported appropriately seating and restraining their children (2 (1) = 8.093, p<.05). The self-efficacy measure regarding parents' confidence in installing a child restraint showed a significant association with appropriate parental restraint practices (2 (1) = 7.036, p<.05). Results suggested that some parents may have misinterpreted the announcement of the legislative amendment as the announcement of the enforcement of the legislation instead. Some parents who correctly reported details of the legislation did not report appropriate child restraint practices. This finding shows that parents' knowledge of the legislative amendment does not necessarily have an impact on their behaviour to appropriately seat and restrain children. The results of these studies have important implications for road safety and the prevention of road-related injury and death to children in Queensland. Firstly, parents reported feeling unsure of how to install restraints, which suggests that there may be children travelling in restraints that have not been installed correctly, putting them at risk. Interventions to alert and encourage parents to seek advice when unsure about the correct installation of child restraints could be considered. Secondly, some parents in this study although they were using the most appropriate restraint for their children, reported using a type that was not the most appropriate restraint for the child's age according to the legislation. This suggests that intervention may be effective in helping parents make a more accurate choice of the most appropriate type of restraint to use with children, especially as the child ages and child restraint requirements change. Further research could be conducted to ascertain the most effective methods of informing and motivating parents to use the most appropriate restraints and seating positions for their children, as these results show a concerning disparity between reported restraint practices and those that were observed.
Resumo:
We demonstrate a simple electrochemical route to produce uniformly sized gold nanospikes without the need for a capping agent or prior modification of the electrode surface, which are predominantly oriented in the {111} crystal plane and exhibit promising electrocatalytic and SERS properties.
Resumo:
Over the past few decades a major paradigm shift has occurred in the conceptualisation of chronic pain as a complex multidimensional phenomenon. Yet, pain experienced by individuals with a primary disability continues to be understood largely from a traditional biomedical model, despite its inherent limitations. This is reflected in the body of literature on the topic that is primarily driven by positivist assumptions and the search for etiologic pain mechanisms. Conversely, little is known about the experiences of and meanings attributed to, disability-related pain. Thus the purpose of this paper is to discuss the use of focus group methodology in elucidating the meanings and experiences of this population. Here, a distinction is made between the method of the focus group and focus group research as methodology. Typically, the focus group is presented as a seemingly atheoretical method of research. Drawing on research undertaken on the impact of chronic pain in people with multiple sclerosis, this paper seeks to theorise the focus group in arguing the methodological congruence of focus group research and the study of pain experience. It is argued that the contributions of group interaction and shared experiences in focus group discussions produce data and insights less accessible through more structured research methods. It is concluded that a biopsychosocial perspective of chronic pain may only ever be appreciated when the person-in-context is the unit of investigation.
Resumo:
This paper proposes a new iterative method to achieve an optimally fitting plate for preoperative planning purposes. The proposed method involves integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.