735 resultados para multi-body registration
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
Lockyer Valley - Sliced topographic mesh, basement surfaces and surface watercourses as well as observation bores with classified geology and water level disks.
Resumo:
A mathematical model is developed to simulate the discharge of a LiFePO4 cathode. This model contains 3 size scales, which match with experimental observations present in the literature on the multi-scale nature of LiFePO4 material. A shrinking-core is used on the smallest scale to represent the phase-transition of LiFePO4 during discharge. The model is then validated against existing experimental data and this validated model is then used to investigate parameters that influence active material utilisation. Specifically the size and composition of agglomerates of LiFePO4 crystals is discussed, and we investigate and quantify the relative effects that the ionic and electronic conductivities within the oxide have on oxide utilisation. We find that agglomerates of crystals can be tolerated under low discharge rates. The role of the electrolyte in limiting (cathodic) discharge is also discussed, and we show that electrolyte transport does limit performance at high discharge rates, confirming the conclusions of recent literature.
Interaction between disinhibition and restraint: Implications for body weight and eating disturbance
Resumo:
An increase in obesity is usually accompanied by an increase in eating disturbances. Susceptibility to these states may arise from different combinations of underlying traits: Three Factor Eating Questionnaire (TFEQ) Restraint and Disinhibition. Two studies were conducted to examine the interaction between these traits; one on-line study (n=351) and one laboratory-based study (n=120). Participants completed a battery of questionnaires and provided self-report measures of body weight and physical activity. A combination of high Disinhibition and high Restraint was associated with a problematic eating behaviour profile (EAT-26), and a higher rate of smoking and alcohol consumption. A combination of high Disinhibition and low Restraint was associated with a higher susceptibility to weight gain and a higher sedentary behaviour. These data show that different combinations of Disinhibition and Restraint are associated with distinct weight and behaviour outcomes.
Resumo:
Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.
Resumo:
In a consumerist society obsessed with body image and thinness, obesity levels have reached an all-time high. This multi-faceted book written by a range of experts, explores the social, cultural, clinical and psychological factors that lie behind the Obesity Epidemic . It is required reading for the many healthcare professionals dealing with the effects of obesity and for anyone who wants to know more about the causes of weight gain and the best ways of dealing with it. Fat Matters covers a range of issues from sociology through medicine to technology. This is not a book for the highly specialised expert. Rather it is a book that shows the diversity of approaches to the phenomenon of obesity, tailored to the reader who wants to be up-to-date and well-informed on a subject that is possibly as frequently discussed and as misunderstood as the weather.
Resumo:
Obese children move less and with greater difficulty than normal-weight counterparts but expend comparable energy. Increased metabolic costs have been attributed to poor biomechanics but few studies have investigated the influence of obesity on mechanical demands of gait. This study sought to assess three-dimensional lower extremity joint powers in two walking cadences in 28 obese and normal-weight children. 3D-motion analysis was conducted for five trials of barefoot walking at self-selected and 30% greater than self-selected cadences. Mechanical power was calculated at the hip, knee, and ankle in sagittal, frontal and transverse planes. Significant group differences were seen for all power phases in the sagittal plane, hip and knee power at weight acceptance and hip power at propulsion in the frontal plane, and knee power during mid-stance in the transverse plane. After adjusting for body weight, group differences existed in hip and knee power phases at weight acceptance in sagittal and frontal planes, respectively. Differences in cadence existed for all hip joint powers in the sagittal plane and frontal plane hip power at propulsion. Frontal plane knee power at weight acceptance and sagittal plane knee power at propulsion were significantly different between cadences. Larger joint powers in obese children contribute to difficulty performing locomotor tasks, potentially decreasing motivation to exercise.
Resumo:
Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.
Resumo:
Recent claims of equivalence of animal and human reasoning are evaluated and a study of avian cognition serves as an exemplar of weaknesses in these arguments. It is argued that current research into neurobiological cognition lacks theoretical breadth to substantiate comparative analyses of cognitive function. Evaluation of a greater range of theoretical explanations is needed to verify claims of equivalence in animal and human cognition. We conclude by exemplifying how the notion of affordances in multi-scale dynamics can capture behavior attributed to processes of analogical and inferential reasoning in animals and humans.
Resumo:
Multi-disciplinary approaches to complex problems are becoming more common – they enable criteria manifested in distinct (and potentially conflicting) domains to be jointly balanced and satisfied. In this paper we present airport terminals as a case study which requires multi-disciplinary knowledge in order to balance conflicting security, economic and passenger-driven needs and correspondingly enhance the design, management and operation of airport terminals. The need for a truly multi-disciplinary scientific approach which integrates information, process, people, technology and space domains is highlighted through a brief discussion of two challenges currently faced by airport operators. The paper outlines the approach taken by this project, detailing the aims and objectives of each of seven diverse research programs.
Resumo:
This thesis explores a way to inform the architectural design process for contemporary workplace environments. It reports on both theoretical and practical outcomes through an exclusively Australian case study of a network enterprise comprised of collaborative, yet independent business entities. The internet revolution, substantial economic and cultural shifts, and an increased emphasis on lifestyle considerations have prompted a radical re-ordering of organisational relationships and the associated structures, processes, and places of doing business. The social milieu of the information age and the knowledge economy is characterised by an almost instantaneous flow of information and capital. This has culminated in a phenomenon termed by Manuel Castells as the network society, where physical locations are joined together by continuous communication and virtual connectivity. A new spatial logic encompassing redefined concepts of space and distance, and requiring a comprehensive shift in the approach to designing workplace environments for today’s adaptive, collaborative organisations in a dynamic business world, provides the backdrop for this research. Within the duality of space and an augmentation of the traditional notions of place, organisational and institutional structures pose new challenges for the design professions. The literature revealed that there has always been a mono-organisational focus in relation to workplace design strategies. The phenomenon of inter-organisational collaboration has enabled the identification of a gap in the knowledge relative to workplace design. This new context generated the formulation of a unique research construct, the NetWorkPlace™©, which captures the complexity of contemporary employment structures embracing both physical and virtual work environments and practices, and provided the basis for investigating the factors that are shaping and defining interactions within and across networked organisational settings. The methodological orientation and the methods employed follow a qualitative approach and an abductively driven strategy comprising two distinct components, a cross-sectional study of the whole of the network and a longitudinal study, focusing on a single discrete workplace site. The complexity of the context encountered dictated that a multi-dimensional investigative framework was required to be devised. The adoption of a pluralist ontology and the reconfiguration of approaches from traditional paradigms into a collaborative, trans-disciplinary, multi-method epistemology provided an explicit and replicatable method of investigation. The identification and introduction of the NetWorkPlace™© phenomenon, by necessity, spans a number of traditional disciplinary boundaries. Results confirm that in this context, architectural research, and by extension architectural practice, must engage with what other disciplines have to offer. The research concludes that no single disciplinary approach to either research or practice in this area of design can suffice. Pierre Bourdieau’s philosophy of ‘practice’ provides a framework within which the governance and technology structures, together with the mechanisms enabling the production of social order in this context, can be understood. This is achieved by applying the concepts of position and positioning to the corporate power dynamics, and integrating the conflict found to exist between enterprise standard and ferally conceived technology systems. By extending existing theory and conceptions of ‘place’ and the ‘person-environment relationship’, relevant understandings of the tensions created between Castells’ notions of the space of place and the space of flows are established. The trans-disciplinary approach adopted, and underpinned by a robust academic and practical framework, illustrates the potential for expanding the range and richness of understanding applicable to design in this context. The outcome informs workplace design by extending theoretical horizons, and by the development of a comprehensive investigative process comprising a suite of models and techniques for both architectural and interior design research and practice, collectively entitled the NetWorkPlace™© Application Framework. This work contributes to the body of knowledge within the design disciplines in substantive, theoretical, and methodological terms, whilst potentially also influencing future organisational network theories, management practices, and information and communication technology applications. The NetWorkPlace™© as reported in this thesis, constitutes a multi-dimensional concept having the capacity to deal with the fluidity and ambiguity characteristic of the network context, as both a topic of research and the way of going about it.
Resumo:
Multi-level concrete buildings requrre substantial temporary formwork structures to support the slabs during construction. The primary function of this formwork is to safely disperse the applied loads so that the slab being constructed, or the portion of the permanent structure already constructed, is not overloaded. Multi-level formwork is a procedure in which a limited number of formwork and shoring sets are cycled up the building as construction progresses. In this process, each new slab is supported by a number of lower level slabs. The new slab load is, essentially, distributed to these supporting slabs in direct proportion to their relative stiffness. When a slab is post-tensioned using draped tendons, slab lift occurs as a portion of the slab self-weight is balanced. The formwork and shores supporting that slab are unloaded by an amount equivalent to the load balanced by the post-tensioning. This produces a load distribution inherently different from that of a conventionally reinforced slab. Through , theoretical modelling and extensive on-site shore load measurement, this research examines the effects of post-tensioning on multilevel formwork load distribution. The research demonstrates that the load distribution process for post-tensioned slabs allows for improvements to current construction practice. These enhancements include a shortening of the construction period; an improvement in the safety of multi-level form work operations; and a reduction in the quantity of form work materials required for a project. These enhancements are achieved through the general improvement in safety offered by post-tensioning during the various formwork operations. The research demonstrates that there is generally a significant improvement in the factors of safety over those for conventionally reinforced slabs. This improvement in the factor of safety occurs at all stages of the multi-level formwork operation. The general improvement in the factors of safety with post-tensioned slabs allows for a shortening of the slab construction cycle time. Further, the low level of load redistribution that occurs during the stripping operations makes post-tensioned slabs ideally suited to reshoring procedures. Provided the overall number of interconnected levels remains unaltered, it is possible to increase the number of reshored levels while reducing the number of undisturbed shoring levels without altering the factors of safety, thereby, reducing the overall quantity of formwork and shoring materials.