320 resultados para molecular spectroscopy
Resumo:
Raman spectroscopy has been used to study the rare earth mineral churchite-(Y) of formula (Y,REE)(PO4) •2H2O. The mineral contains yttrium and depending on the locality, a range of rare earth metals. The Raman spectra of two churchite-(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite-(Y) downloaded from the RRUFF data base. The Raman spectra of churchite-(Y) are characterized by an intense sharp band at 975 cm-1 assigned to the ν1 (PO4)3- symmetric stretching mode. A lower intensity band observed at around 1065 cm-1 is attributed to the ν3 (PO43-) antisymmetric stretching mode. The (PO43-) bending modes are observed at 497 cm-1 (ν2) and 563 cm-1(ν4). Some small differences in the band positions between the four churchite-(Y) samples from four different localities were found. These differences are possible to explain as different compositions of the churchite-(Y) minerals.
Resumo:
The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.
Resumo:
Raman spectra of antimonate mineral brizziite NaSbO3 were studied and related to the structure of the mineral. Two sharp bands at 617 and 660 cm-1 are attributed to the SbO3- symmetric stretching mode. The reason for two symmetric stretching vibrations depends upon the bonding of the SbO3- units. The band at 617 cm-1 is assigned to bonding through the Sb and the 660 cm-1 to bonding through the oxygen. The low intensity band at 508 cm-1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity bands were found at 503, 526 and 578 cm-1. Sharp Raman bands observed at 204, 230, 307 and 315 cm-1are assigned to OSbO bending modes. Raman spectroscopy enables a better understanding of the molecular structure of the mineral brizziite.
Resumo:
The arsenite minerals finnemanite Pb5(As3+O3)3Cl been studied by Raman spectroscopy. The most intense Raman band at 871 cm-1 is assigned to the ν1 (AsO3)3- symmetric stretching vibration. Three Raman bands at 898, 908 and 947 cm-1 are assigned to the ν3 (AsO3)3- antisymmetric stretching vibration. The observation of multiple antisymmetric stretching vibrations suggest that the (AsO3)3- units are not equivalent in the molecular structure of finnemanite. Two Raman bands at 383 and 399 cm-1 are assigned to the ν2 (AsO3)3- bending modes. DFT calculations enabled the position of AsO32- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. Raman bands are observed at 115, 145, 162, 176, 192, 216 and 234 cm-1 as well. The two most intense bands are observed at 176 and 192 cm-1. These bands are assigned to PbCl stretching vibrations and result from transverse/ longitudinal splitting. The bands at 145 and 162 cm-1 may be assigned to Cl-Pb-Cl bending modes.
Resumo:
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2•2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm-1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm-1 are assigned to the SO42- ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm-1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm-1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm-1 and at 417, 434 and 482 cm-1 are assigned to the SO42- 4 and 2 bending modes, respectively. Raman bands at 337 and 373 cm-1 are assigned to O-Sb-O bending modes. Multiple Raman bands for both SO42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.
Resumo:
Four nickel carbonate-bearing minerals from Australia have been investigated to study the effect of Ni for Mg substitution. The spectra of nullaginite, zaratite, widgiemoolthalite and takovite show three main features in the range of 26,720–25,855 cm−1 (ν1-band), 15,230–14,740 cm−1 (ν2-band) and 9,200–9,145 cm−1 (ν3-band) which are characteristic of divalent nickel in six-fold coordination. The Crystal Field Stabilization Energy (CFSE) of Ni2+ in the four carbonates is calculated from the observed 3A2g(3F) → 3T2g(3F) transition. CFSE is dependent on mineralogy, crystallinity and chemical composition (Al/Mg-content). The splitting of the ν1- and ν3-bands and non-Gaussian shape of ν3-band in the minerals are the effects of Ni-site distortion from regular octahedral. The effect of structural cation substitutions (Mg2+, Ni2+, Fe2+ and trivalent cations, Al3+, Fe3+) in the carbonate minerals is noticed on band shifts. Thus, electronic bands in the UV–Vis–NIR spectra and the overtones and combination bands of OH and carbonate ion in NIR show shifts to higher wavenumbers, particularly for widgiemoolthalite and takovite.
Resumo:
The investigation into the encapsulation of gold nanoparticles (AuNPs) by poly(methyl methacrylate) (PMMA) was undertaken. This was performed by three polymerisation techniques including: grafting PMMA synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation to AuNPs, grafting PMMA synthesised by atom transfer radical polymerisation (ATRP) from the surface of functionalised AuNPs and by encapsulation of AuNPs within PMMA latexes produced through photo-initiated oil-in-water (o/w) miniemulsion polymerisation. The grafting of RAFT PMMA to AuNPs was performed by the addition of the RAFT functionalised PMMA to citrate stabilised AuNPs. This was conducted with a range of PMMA of varying molecular weight distribution (MWD) as either the dithioester or thiol end-group functionalities. The RAFT PMMA polymers were characterised by gel permeation chromatography (GPC), ultraviolet-visible (UV-vis), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), Fourier transform Raman (FT-Raman) and proton nuclear magnetic resonance (1H NMR) spectroscopies. The attachment of PMMA to AuNPs showed a tendency for AuNPs to associate with the PMMA structures formed, though significant aggregation occurred. Interestingly, thiol functionalised end-group PMMA showed very little aggregation of AuNPs. The spherical polymer-AuNP structures did not vary in size with variations in PMMA MWD. The PMMA-AuNP structures were characterised using scanning electron microscopy (SEM), transition electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopy. The surface confined ATRP grafting of PMMA from initiator functionalised AuNPs was polymerised in both homogeneous and heterogeneous media. 11,11’- dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane] (DSBr) was used as the surface-confined initiator and was synthesised in a three step procedure from mercaptoundecanol (MUD). All compounds were characterised by 1H NMR, FTIR-ATR and Raman spectroscopies. The grafting in homogeneous media resulted in amorphous PMMA with significant AuNP aggregation. Individually grafted AuNPs were difficult to separate and characterise, though SEM, TEM, EDAX and UV-vis spectroscopy was used. The heterogeneous polymerisation did not produce grafted AuNPs as characterised by SEM and EDAX. The encapsulation of AuNPs within PMMA latexes through the process of photoinitiated miniemulsion polymerisation was successfully achieved. Initially, photoinitiated miniemulsion polymerisation was conducted as a viable low temperature method of miniemulsion initiation. This proved successful producing a stable PMMA with good conversion efficiency and narrow particle size distribution (PSD). This is the first report of such a system. The photo-initiated technique was further optimised and AuNPs were included into the miniemulsion. AuNP encapsulation was very effective, producing reproducible AuNP encapsulated PMMA latexes. Again, this is the first reported case of this. The latexes were characterised by TEM, SEM, GPC, gravimetric analysis and dynamic light scattering (DLS).
Resumo:
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.
Resumo:
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.
Resumo:
A technique is described whereby micro-ATR/FTIR imaging can be used to follow polymer degradation reactions in situ in real time. The internal reflection element (IRE) assembly is removed from the ATR objective and polymer is solvent cast directly onto the IRE surface. The polymer is then subjected to degradation conditions and molecular structural changes monitored by periodically replacing the IRE assembly back in the ATR objective and collecting spectra which can be used to construct images. This approach has the benefit that the same part of the sample is always studied, and that contact by pressure which might damage the polymer surface is not required. The technique is demonstrated using the polymer Topas which was degraded by exposure to UVC light in air.
Resumo:
The adsorption of benzoic acid on both sodium and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of benzoic acid additional near infrared bands are observed at 8665 cm-1 and assigned to an interaction of benzoic acid with the water of hydration. Upon adsorption of the benzoic acid on Na-Mt, the NIR bands are now observed at 5877, 5951, 6028 and 6128 cm-1 and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4074, 4205, 4654 and 4678 cm-1 are attributed to CH combination bands resulting from the adsorption of the benzoic acid. Benzoic acid is used as a model molecule for adsorption studies. The application of near infrared spectroscopy to the study of adsorption has the potential for the removal of acids from polluted aqueous systems.
Resumo:
Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.
Resumo:
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)•H2O and brassite Mg(AsO3OH)•4H2O. Intense Raman bands in haidingerite spectrum observed at 745 and 855 cm-1 are assigned to the (AsO3OH)2- ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite two similarly assigned intense bands are found at 809 and 862 cm-1. The observation of multiple Raman bands in the (AsO3OH)2- stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm-1 for haidingerite and 3035 cm-1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH…O hydrogen bond lengths were calculated from the Raman spectra based on empiric relations.