554 resultados para modified local ternary pattern
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
This work is focussed on developing a commissioning procedure so that a Monte Carlo model, which uses BEAMnrc’s standard VARMLC component module, can be adapted to match a specific BrainLAB m3 micro-multileaf collimator (μMLC). A set of measurements are recommended, for use as a reference against which the model can be tested and optimised. These include radiochromic film measurements of dose from small and offset fields, as well as measurements of μMLC transmission and interleaf leakage. Simulations and measurements to obtain μMLC scatter factors are shown to be insensitive to relevant model parameters and are therefore not recommended, unless the output of the linear accelerator model is in doubt. Ultimately, this note provides detailed instructions for those intending to optimise a VARMLC model to match the dose delivered by their local BrainLAB m3 μMLC device.
Resumo:
This paper provides an interim report of a large empirical evaluation study in progress. An intervention was implemented to evaluate the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on Kindergarten students’ mathematical development. Four large schools (two from Sydney and two from Brisbane), 16 teachers and their 316 students participated in the first phase of a 2-year longitudinal study. Eight of 16 classes implemented the PASMAP program over three school terms. This paper provides an overview of key aspects of the intervention, and preliminary analysis of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas.
Resumo:
We have developed a bioreactor vessel design which has the advantages of simplicity and ease of assembly and disassembly, and with the appropriately determined flow rate, even allows for a scaffold to be suspended freely regardless of its weight. This article reports our experimental and numerical investigations to evaluate the performance of a newly developed non-perfusion conical bioreactor by visualizing the flow through scaffolds with 45° and 90° fiber lay down patterns. The experiments were conducted at the Reynolds numbers (Re) 121, 170, and 218 based on the local velocity and width of scaffolds. The flow fields were captured using short-time exposures of 60 µm particles suspended in the bioreactor and illuminated using a thin laser sheet. The effects of scaffold fiber lay down pattern and Reynolds number were obtained and correspondingly compared to results obtained from a computational fluid dynamics (CFD) software package. The objectives of this article are twofold: to investigate the hypothesis that there may be an insufficient exchange of medium within the interior of the scaffold when using our non-perfusion bioreactor, and second, to compare the flows within and around scaffolds of 45° and 90° fiber lay down patterns. Scaffold porosity was also found to influence flow patterns. It was therefore shown that fluidic transport could be achieved within scaffolds with our bioreactor design, being a non-perfusion vessel. Fluid velocities were generally same of the same or one order lower in magnitude as compared to the inlet flow velocity. Additionally, the 90° fiber lay down pattern scaffold was found to allow for slightly higher fluid velocities within, as compared to the 45° fiber lay down pattern scaffold. This was due to the architecture and pore arrangement of the 90° fiber lay down pattern scaffold, which allows for fluid to flow directly through (channel-like flow).
Resumo:
Policymakers often propose strict enforcement strategies to fight the shadow economy and to increase tax morale. However, there is an alternative bottom-up approach that decentralises political power to those who are close to the problems. This paper analyses the relationship with local autonomy. We use data on tax morale at the individual level and macro data on the size of the shadow economy to analyse the relevance of local autonomy and compliance in Switzerland. The findings suggest that there is a positive (negative) relationship between local autonomy and tax morale (size of the shadow economy).
Resumo:
There is a widespread recognition to the need of better manage municipal property in most cities in the world. Structural problems across regional, state, and territorial governments that have legal powers to own and maintain real property are similar, regardless of the level of development of each country. Start from a very basic level of property inventory records. The need for better manage to the local government owned property is the result of widespread decentralisation initiatives that often have devolved huge property portfolios from central to local governments almost “overnight”. At the same time municipal or regional governments were and continue to be unprepared to deal with multiple issues related to the role of property owners and managers. The lack of discussion of public asset management especially the elements that should be incorporated in the framework creates an important challenge to study the discipline of public asset management further. The aim of this paper is to study the practices of public asset management in developed countries, especially the elements of public asset management framework, and its transferability to developing countries. A case study was selected and conducted to achieve this aim. They involved interviews and a focus group. The study found that in public asset management framework, proper asset identification, public asset needs analysis, asset life cycle and performance measurements are an important element that should be incorporated in the framework. Those elements are transferable and applicable to developing countries’ local governments. Finally, findings from this study provide useful input for the local government policy makers, scholars and asset management practitioners to establish a public asset management framework toward more efficient and effective local governments in managing their assets as well as increasing public services quality.
Resumo:
In order to examine time allocation patterns within household-level trip-chaining, simultaneous doubly-censored Tobit models are applied to model time-use behavior within the context of household activity participation. Using the entire sample and a sub-sample of worker households from Tucson's Household Travel Survey, two sets of models are developed to better understand the phenomena of trip-chaining behavior among five types of households: single non-worker households, single worker households, couple non-worker households, couple one-worker households, and couple two-worker households. Durations of out-of-home subsistence, maintenance, and discretionary activities within trip chains are examined. Factors found to be associated with trip-chaining behavior include intra-household interactions with the household types and their structure and household head attributes.
Resumo:
Wireless network technologies, such as IEEE 802.11 based wireless local area networks (WLANs), have been adopted in wireless networked control systems (WNCS) for real-time applications. Distributed real-time control requires satisfaction of (soft) real-time performance from the underlying networks for delivery of real-time traffic. However, IEEE 802.11 networks are not designed for WNCS applications. They neither inherently provide quality-of-service (QoS) support, nor explicitly consider the characteristics of the real-time traffic on networked control systems (NCS), i.e., periodic round-trip traffic. Therefore, the adoption of 802.11 networks in real-time WNCSs causes challenging problems for network design and performance analysis. Theoretical methodologies are yet to be developed for computing the best achievable WNCS network performance under the constraints of real-time control requirements. Focusing on IEEE 802.11 distributed coordination function (DCF) based WNCSs, this paper analyses several important NCS network performance indices, such as throughput capacity, round trip time and packet loss ratio under the periodic round trip traffic pattern, a unique feature of typical NCSs. Considering periodic round trip traffic, an analytical model based on Markov chain theory is developed for deriving these performance indices under a critical real-time traffic condition, at which the real-time performance constraints are marginally satisfied. Case studies are also carried out to validate the theoretical development.
Resumo:
We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.
Resumo:
Various countries have been introducing sustainable assessment tools for real estate design to produce integrated sustainability components not just for the building, but also the landscape component of the development. This paper aims to present the comparison between international and local assessment tools of landscape design for housing estate developments in Bangkok Metropolitan Region (BMR), Thailand. The methodologies used are to review, then compare and identify discrepancy indicators among the tools. This paper will examine four international tools; LEED for Neighbourhood Development (LEED – ND) of United State of America (USA), EnviroDevelopment standards of Australia, Residential Landscape Sustainability of United Kingdom (UK) and Green Mark for Infrastructure of Singapore; and three BMR’s existing tools; Land Subdivision Act B.E. 2543, Environmental Impact Assessment Monitoring Awards (EIA-MA) and Thai’s Rating for Energy and Environmental Sustainability of New construction and major renovation (TREES-NC). The findings show that there are twenty two elements of three categories which are neighbourhood design, community management, and environmental condition. Moreover, only one element in neighbourhood designs different between the international and local tools. The sustainable assessment tools have existed in BMR but they are not complete in only one assessment tool. Thus, the development of new comprehensive assessment tool will be necessary in BMR; however, it should meet the specific environment and climate condition for housing estate development at BMR.
Resumo:
This study investigates the application of local search methods on the railway junction traffic conflict-resolution problem, with the objective of attaining a quick and reasonable solution. A procedure based on local search relies on finding a better solution than the current one by a search in the neighbourhood of the current one. The structure of neighbourhood is therefore very important to an efficient local search procedure. In this paper, the formulation of the structure of the solution, which is the right-of-way sequence assignment, is first described. Two new neighbourhood definitions are then proposed and the performance of the corresponding local search procedures is evaluated by simulation. It has been shown that they provide similar results but they can be used to handle different traffic conditions and system requirements.
Resumo:
In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.
Resumo:
This paper investigates how contemporary works of women’s travel writing are reworking canonical formations of environmental literature by presenting imaginative accounts of travel writing that are both literal and metaphorical. In this context, the paper considers how women who travel/write may intersect the spatial hybridities of travel writing and nature writing, and in doing so, create a new genre of environmental literature that is not only ecologically sensitive but gendered. As the role of female travel writers in generating this knowledge is immense but largely unexamined, this paper will investigate how a feminist geography can be applied, both critically and creatively, to local accounts of travel. It will draw on my own travels around Queensland in an attempt to explore how many female storytellers situate themselves, in and against, various discourses of mobility and morality.
Resumo:
Purpose–The purpose of this paper is to formulate a conceptual framework for urban sustainability indicators selection. This framework will be used to develop an indicator-based evaluation method for assessing the sustainability levels of residential neighbourhood developments in Malaysia. Design/methodology/approach–We provide a brief overview of existing evaluation frameworks for sustainable development assessment. We then develop a conceptual Sustainable Residential Neighbourhood Assessment (SNA) framework utilising a four-pillar sustainability framework (environmental, social, economic and institutional) and a combination of domain-based and goal-based general frameworks. This merger offers the advantages of both individual frameworks, while also overcoming some of their weaknesses when used to develop the urban sustainability evaluation method for assessing residential neighbourhoods. Originality/value–This approach puts in evidence that many of the existing frameworks for evaluating urban sustainability do not extend their frameworks to include assessing housing sustainability at a local level. Practical implications–It is expected that the use of the indicator-based Sustainable Neighbourhood Assessment framework will present a potential mechanism for planners and developers to evaluate and monitor the sustainability performance of residential neighbourhood developments.
Resumo:
This abstract explores the possibility of a grass roots approach to engaging people in community change initiatives by designing simple interactive exploratory prototypes for use by communities over time that support shared action. The prototype is gradually evolved in response to community use, fragments of data gathered through the prototype, and participant feedback with the goal of building participation in community change initiatives. A case study of a system to support ridesharing is discussed. The approach is compared and contrasted to a traditional IT systems procurement approach.