311 resultados para machine traffic
Resumo:
Material for this paper comes from as report commissioned by the Department of Family Services, Aboriginal and Islander Affairs. The report is the result of a multi strategy research project designed to assess the impact of gaming machines on the fundraising capacity of charitable and community organisations in Queensland. The study was conducted during the 1993 calendar year. The first Queensland gaming machine was commissioned on the 11 February, 1992 at 11.30 am in Brisbane at the Kedron Wavell Services Club. Eighteen more clubs followed that week. Six months later there were gaming machines in 335 clubs, and 250 hotels and taverns, representing a state wide total of 7,974 machines in operation. The 10,000 gaming machine was commissioned on the 18 March, 1993 and the 1,000 operational gaming machine site was opened on 18th February, 1994.
Resumo:
Traditionally navigational safety analyses rely on historical collision data which is often hampered because of low collision counts, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these problems is using navigational traffic conflicts or near-misses as an alternative to the collision data. This book discusses how traffic conflicts can effectively be used in modeling of port water collision risks. Techniques for measuring and predicting collision risks in fairways, intersections, and anchorages are discussed by utilizing advanced statistical models. Risk measurement models, which quantitatively measure collision risks in waterways, are discussed. To predict risks, a hierarchical statistical modeling technique is discussed which identifies the factors influencing the risks. The modeling techniques are illustrated for Singapore port data. Results showed that traffic conflicts are an ethically appealing alternative to collision data for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.
Resumo:
Findings from an online survey conducted by Queensland University of Technology (QUT) shows that Australia is suffering from a lack of data reflecting trip generation for use in Traffic Impact Assessments (TIAs). Current independent variables for trip generation estimation are not able to create robust outcomes as well. It is also challenging to account for the impact of the new development on public and active transport as well as the effect of trip chaining behaviour in Australian TIA studies. With this background in mind, research is being implemented by QUT to find a new approach developing a combined model of trip generation and mode choice with consideration of trip chaining effects. It is expected that the model will provide transferable outcomes as it is developed based on socio-demographic parameters. Child Care Centres within the Brisbane area have been nominated for model development. At the time, the project is in the data collection phase. Findings from the pilot survey associated with capturing trip chaining and mode choice information reveal that applying questionnaire is able to capture required information in an acceptable level. The result also reveals that several centres within an area should be surveyed in order to provide sufficient data for trip chaining and modal split analysis.
Resumo:
Safety at Railway Level Crossings (RLXs) is an important issue within the Australian transport system. Crashes at RLXs involving road vehicles in Australia are estimated to cost $10 million each year. Such crashes are mainly due to human factors; unintentional errors contribute to 46% of all fatal collisions and are far more common than deliberate violations. This suggests that innovative intervention targeting drivers are particularly promising to improve RLX safety. In recent years there has been a rapid development of a variety of affordable technologies which can be used to increase driver’s risk awareness around crossings. To date, no research has evaluated the potential effects of such technologies at RLXs in terms of safety, traffic and acceptance of the technology. Integrating driving and traffic simulations is a safe and affordable approach for evaluating these effects. This methodology will be implemented in a driving simulator, where we recreated realistic driving scenario with typical road environments and realistic traffic. This paper presents a methodology for evaluating comprehensively potential benefits and negative effects of such interventions: this methodology evaluates driver awareness at RLXs , driver distraction and workload when using the technology . Subjective assessment on perceived usefulness and ease of use of the technology is obtained from standard questionnaires. Driving simulation will provide a model of driving behaviour at RLXs which will be used to estimate the effects of such new technology on a road network featuring RLX for different market penetrations using a traffic simulation. This methodology can assist in evaluating future safety interventions at RLXs.
Resumo:
Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.
Resumo:
The security of power transfer across a given transmission link is typically a steady state assessment. This paper develops tools to assess machine angle stability as affected by a combination of faults and uncertainty of wind power using probability analysis. The paper elaborates on the development of the theoretical assessment tool and demonstrates its efficacy using single machine infinite bus system.
Resumo:
Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.
Resumo:
Traffic safety studies mandate more than what existing micro-simulation models can offer as they postulate that every driver exhibits a safe behaviour. All the microscopic traffic simulation models are consisting of a car-following model and the Gazis–Herman–Rothery (GHR) car-following model is a widely used model. This paper highlights the limitations of the GHR car-following model capability to model longitudinal driving behaviour for safety study purposes. This study reviews and compares different version of the GHR model. To empower the GHR model on precise metrics reproduction a new set of car-following model parameters is offered to simulate unsafe vehicle conflicts. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time to Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against the generic versions of the GHR model. The results from simulation tests illustrate that the proposed model does predict the safety metrics better than the generic GHR model. Additionally it can potentially facilitate assessing and predicting traffic facilities’ safety using microscopic simulation. The new model can predict Near-miss rear-end crashes.
Resumo:
This paper studies traffic hysteresis arising in traffic oscillations from a behavioral perspective. It is found that the occurrence and type of traffic hysteresis is closely correlated with driver behavior when experiencing traffic oscillations and with the time driver reaction begins relative to the starting deceleration wave. Statistical results suggest that driver behavior is different depending on its position along the oscillation. This suggests that different car-following models should be used inside the different stages of an oscillation in order to replicate realistic congestion features.
Resumo:
Frequent exposure to ultrafine particles (UFP) is associated with detrimental effects on cardiopulmonary function and health. UFP dose and therefore the associated health risk are a factor of exposure frequency, duration, and magnitude of (therefore also proximity to) a UFP emission source. Bicycle commuters using on-road routes during peak traffic times are sharing a microenvironment with high levels of motorised traffic, a major UFP emission source. Inhaled particle counts were measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing. Total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003). For bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
Purpose Anecdotal evidence suggests that some sunglass users prefer yellow tints for outdoor activities, such as driving, and research has suggested that such tints improve the apparent contrast and brightness of real-world objects. The aim of this study was to establish whether yellow filters resulted in objective improvements in performance for visual tasks relevant to driving. Methods Response times of nine young (age [mean ± SD], 31.4 ± 6.7 years) and nine older (age, [mean ± SD], 74.6 ± 4.8) adults were measured using video presentations of traffic hazards (driving hazard perception task) and a simple low-contrast grating appeared at random peripheral locations on a computer screen. Response times were compared when participants wore a yellow filter (with and without a linear polarizer) versus a neutral density filter (with and without a linear polarizer). All lens combinations were matched to have similar luminance transmittances (˜27%). Results In the driving hazard perception task, the young but not the older participants responded significantly more rapidly to hazards when wearing a yellow filter than with a luminance-matched neutral density filter (mean difference, 450 milliseconds). In the low-contrast grating task, younger participants also responded more quickly for the yellow filter condition but only when combined with a polarizer. Although response times increased with increasing stimulus eccentricity for the low-contrast grating task, for the younger participants, this slowing of response times with increased eccentricity was reduced in the presence of a yellow filter, indicating that perception of more peripheral objects may be improved by this filter combination. Conclusions Yellow filters improve response times for younger adults for visual tasks relevant to driving.
Resumo:
Social harmony can manifest in many ways. In rapidly motorizing countries like China, a growing area of potential disharmony is road use. The increased ability to purchase a car for the first time and a subsequent increase in new drivers has seen several Chinese cities take unprecedented measures to manage congestion. There is a corresponding need to ensure effective traffic law enforcement in promoting a safe environment for all road users. This paper reports qualitative research conducted with Beijing car drivers to investigate perceptions of unsafe road use, penalties for traffic violations, and improvements for the current system. Overall, the findings suggest awareness among drivers of many of the key risk factors. A perceived lack of clarity in how penalties are determined was identified and drivers in-dicated a desire to know how revenue from traffic fines is used. Several suggestions for improving the current system included school/community education about road risks and traffic law. The rise of private car ownership in China may contribute to a more harmonious personal life, but at the same time, may contribute to a decrease in societal harmony. A major challenge for authorities in any country is to promote the idea of a collective responsibility for road safety (traffic harmony), especially to those who perceive that traffic rules do not apply to them. This is a potentially greater challenge for China as it strives to balance harmony on the road and harmony in the broader society.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.