203 resultados para load shedding
Resumo:
Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.
Resumo:
This paper presents the details of full scale fire tests of LSF wall panels conducted using realistic fire time-temperature curves. Tests included eight LSF wall specimens of various configurations exposed to both parametric design and natural fire curves. Details of the fire test set-up, test procedure and the results including the measured time-temperature and deformation curves of LSF wall panels are presented along with wall stud failure modes and times. This paper also compares the structural and thermal behavioural characteristics of LSF wall studs with those based on the standard time-temperature curve. Finally, the stud failure times and temperatures are summarized for both standard and realistic design fire curves. This study provides the necessary test data to validate the numerical models of LSF wall panels and to undertake a detailed study into the structural and thermal performance of LSF wall panels exposed to realistic design fire curves.
Resumo:
Bone-anchored prostheses, relying on implants to attach the prosthesis directly to the residual skeleton, are the ultimate resort for patients with transfemoral amputations (TFA) experiencing severe socket discomfort. The first patient receiving a bone-anchored prosthesis underwent the surgery in 1990 in the Sahlgrenska University Hospital (Sweden). To date, there are two commercially available implants: OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany). The key to success to this technique is a firm bone-implant bonding, depending on increasing mechanical stress applied daily during load bearing exercises (LBE). The loading data could be analysed through different biomechanical variables. The intra-tester reliability of these exercises will be presented here. Moreover the effect of increase of loading, axes of application of the load and body weight as well as the difference between force and moment variables will be discussed.
Resumo:
This paper suggests a supervisory control for storage units to provide load leveling in distribution networks. This approach coordinates storage units to charge during high generation and discharge during peak load times, while utilized to improve the network voltage profile indirectly. The aim of this control strategy is to establish power sharing on a pro rata basis for storage units. As a case study, a practical distribution network with 30 buses is simulated and the results are provided.
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
This presentation investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
This paper investigates stochastic analysis of transit segment hourly passenger load factor variation for transit capacity and quality of service (QoS) analysis using Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia. It compares stochastic analysis to traditional peak hour factor (PHF) analysis to gain further insight into variability of transit route segments’ passenger loading during a study hour. It demonstrates that hourly design load factor is a useful method of modeling a route segment’s capacity and QoS time history across the study weekday. This analysis method is readily adaptable to different passenger load standards by adjusting design percentile, reflecting either a more relaxed or more stringent condition. This paper also considers hourly coefficient of variation of load factor as a capacity and QoS assessment measure, in particular through its relationships with hourly average and design load factors. Smaller value reflects uniform passenger loading, which is generally indicative of well dispersed passenger boarding demands and good schedule maintenance. Conversely, higher value may be indicative of pulsed or uneven passenger boarding demands, poor schedule maintenance, and/or bus bunching. An assessment table based on hourly coefficient of variation of load factor is developed and applied to this case study. Inferences are drawn for a selection of study hours across the weekday studied.
Resumo:
This study uses weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia •Stochastic analysis is compared to peak hour factor (PHF) analysis for insight into passenger loading variability •Hourly design load factor (e.g. 88th percentile) is found to be a useful method of modeling a segment’s passenger demand time-history across a study weekday, for capacity and QoS assessment •Hourly coefficient of variation of load factor is found to be a useful QoS and operational assessment measure, particularly through its relationship with hourly average load factor, and with design load factor •An assessment table based on hourly coefficient of variation of load factor is developed from the case study
Resumo:
Internal heat sources may not only consume energy directly through their operation (e.g. lighting), but also contribute to building cooling or heating loads, which indirectly change building cooling and heating energy. Through the use of building simulation technique, this paper investigates the influence of building internal load densities on the energy and thermal performance of air conditioned office buildings in Australia. Case studies for air conditioned office buildings in major Australian capital cities are presented. It is found that with a decrease of internal load density in lighting and/or plug load, both the building cooling load and total energy use can be significantly reduced. Their effect on overheating hour reduction would be dependent on the local climate. In particular, it is found that if the building total internal load density is reduced from the base case of “medium” to “extra–low, the building total energy use under the future 2070 high scenario can be reduced by up to 89 to 120 kWh/m² per annum and the overheating problem could be completely avoided. It is suggested that the reduction in building internal load densities could be adopted as one of adaptation strategies for buildings in face of the future global warming.
Resumo:
The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
Resumo:
Lecturing is a traditional method for teaching in discipline-based teaching environments and its success in legal discipline depends upon its alignment with learner backgrounds, learning objectives and the lecturing approaches utilised in the classes. In a situation where students do not have any prior knowledge of the given discipline that requires a particular lecturing approach, a mismatch in such an alignment would place learner knowledge acquisition into a challenging situation. From this perspective, this study tests the suitability of two dominant lecturing approaches—the case and the law-based lecturing approaches. It finds that a lecturer should put more emphasis on the case-based approach while lecturing to non-law background business students at the postgraduate level, provided that such an emphasis should be relative to the cognitive ability of the students and their motivation for learning law units.
Resumo:
Osseointegration has been introduced in the orthopaedic surgery in the 1990’s in Gothenburg (Sweden). To date, there are two frequently used commercially available human implants: the OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany) systems. The rehabilitation program with both systems include some form of static load bearing exercises. These latter involved following a load progression that is monitored by the bathroom scale, providing only the load applied on the vertical axis. The loading data could be analysed through different biomechanical variables. For instance, the load compliance, corresponding to the difference between the load recommended (LR) and the load actually applied on the implant, will be presented here.