159 resultados para geo localisation
Resumo:
Controversies between private and public broadcasters over the broadcasting of live sports, especially cricket, during important sports events have emerged as a serious legal issue in Pakistan. Controversy between Geo Super and Pakistan Television over live telecast of the ICC Cricket World Cup is a typical example of such controversies. An aggressive legal battle, during a most important cricketing event, not only hampered the enjoyment of cricket viewers across the country but also gave Pakistan a bad name across the globe. This article discusses in detail this controversy and highlights lacunas in the existing sports broadcasting regime of Pakistan. There are no clear and well defined sports broadcasting laws in Pakistan. The Pakistan Electronic Media Regulatory Authority (PEMRA) rules are of general nature. Secondly, PEMRA rules are not comprehensive and explicit enough to provide clear guidelines about sports broadcasting. This may be a possible reason why sports broadcasting controversies reach the highest court in Pakistan, the Supreme Court of Pakistan. Despite these ugly battles between broadcasters, the government of Pakistan has never given due importance to this issue and no efforts have been made at any level to come up with legislation on sports broadcasting to avoid such controversies or to resolve them amicably in the light of well-defined laws on this subject. The purpose of this article is to draw the attention of the concerned authorities towards this important issue because in future more such controversies may be expected in the absence of a sports broadcasting regime in the country.
Resumo:
This thesis investigates the role of Chinese microblogging platform Sina Weibo in how the people of Guangzhou understand and negotiate their sense of locality. The geo-identity approach used in this thesis opens up a new approach to explore the complex power relationships that structure our society in and through digital media. It finds that although the Chinese government is trying to orchestrate a homogeneous sense of national belonging, Weibo is constantly reinforcing people's awareness of and identification with the local. The findings show that as new communication technologies and practices reconfigure people's daily experience and social lives, they redefine our sense of self and belonging.
Resumo:
The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.
Resumo:
Nepal, as a consequence of its geographical location and changing climate, faces frequent threats of natural disasters. According to the World Bank’s 2005 Natural Disasters Hotspots Report, Nepal is ranked the 11th most vulnerable country to earthquake and 30th to flood risk. Geo-Hazards International (2011) has classified Kathmandu as one of the world’s most vulnerable cities to earthquakes. In the last four decades more than 32,000 people in Nepal have lost their lives and annual monetary loss is estimated at more than 15 million (US) dollars. This review identifies gaps in knowledge, and progress towards implementation of the Post Hyogo Framework of Action. Nepal has identified priority areas: community resilience, sustainable development and climate change induced disaster risk reduction. However, one gap between policy and action lies in the ability of Nepal to act effectively in accordance with an appropriate framework for media activities. Supporting media agencies include the Press Council, Federation of Nepalese Journalists, Nepal Television, Radio Nepal and Telecommunications Authority and community based organizations. The challenge lies in further strengthening traditional and new media to undertake systematic work supported by government bodies and the National Risk Reduction Consortium (NRRC). Within this context, the ideal role for media is one that is proactive where journalists pay attention to a range of appropriate angles or frames when preparing and disseminating information. It is important to develop policy for effective information collection, sharing and dissemination in collaboration with Telecommunication, Media and Journalists. The aim of this paper is to describe the developments in disaster management in Nepal and their implications for media management. This study provides lessons for government, community and the media to help improve the framing of disaster messages. Significantly, the research highlights the prominence that should be given to flood, landslides, lightning and earthquakes.
Resumo:
This paper describes a vision-only system for place recognition in environments that are tra- versed at different times of day, when chang- ing conditions drastically affect visual appear- ance, and at different speeds, where places aren’t visited at a consistent linear rate. The ma- jor contribution is the removal of wheel-based odometry from the previously presented algo- rithm (SMART), allowing the technique to op- erate on any camera-based device; in our case a mobile phone. While we show that the di- rect application of visual odometry to our night- time datasets does not achieve a level of perfor- mance typically needed, the VO requirements of SMART are orthogonal to typical usage: firstly only the magnitude of the velocity is required, and secondly the calculated velocity signal only needs to be repeatable in any one part of the environment over day and night cycles, but not necessarily globally consistent. Our results show that the smoothing effect of motion constraints is highly beneficial for achieving a locally consis- tent, lighting-independent velocity estimate. We also show that the advantage of our patch-based technique used previously for frame recogni- tion, surprisingly, does not transfer to VO, where SIFT demonstrates equally good performance. Nevertheless, we present the SMART system us- ing only vision, which performs sequence-base place recognition in extreme low-light condi- tions where standard 6-DOF VO fails and that improves place recognition performance over odometry-less benchmarks, approaching that of wheel odometry.
Resumo:
Reductionist thinking will no longer suffice to address contemporary, complex challenges that defy sectoral, national, or disciplinary boundaries. Furthermore, lessons learned from the past cannot be confidently used to predict outcomes or help guide future actions. The authors propose that the confluence of a number of technology and social disruptors presents a pivotal moment in history to enable real-time, accelerated and integrated action that can adequately support a ‘future earth’ through transformational solutions. Building on more than a decade of dialogues hosted by the International Society for Digital Earth (ISDE), and evolving a briefing note presented to delegates of Pivotal2015, the paper presents an emergent context for collectively addressing spatial information, sustainable development and good governance through three guiding principles for enabling prosperous living in the 21st Century. These are: (1) open data, (2) real world context and (3) informed visualization for decision support. The paper synthesizes an interdisciplinary dialogue to create a credible and positive future vision of collaborative and transparent action for the betterment of humanity and planet. It is intended that the three Pivotal Principles can be used as an elegant framework for action towards the Digital Earth vision, across local, regional, and international communities and organizations.
Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models
Resumo:
The emergence of multiple satellite navigation systems, including BDS, Galileo, modernized GPS, and GLONASS, brings great opportunities and challenges for precise point positioning (PPP). We study the contributions of various GNSS combinations to PPP performance based on undifferenced or raw observations, in which the signal delays and ionospheric delays must be considered. A priori ionospheric knowledge, such as regional or global corrections, strengthens the estimation of ionospheric delay parameters. The undifferenced models are generally more suitable for single-, dual-, or multi-frequency data processing for single or combined GNSS constellations. Another advantage over ionospheric-free PPP models is that undifferenced models avoid noise amplification by linear combinations. Extensive performance evaluations are conducted with multi-GNSS data sets collected from 105 MGEX stations in July 2014. Dual-frequency PPP results from each single constellation show that the convergence time of undifferenced PPP solution is usually shorter than that of ionospheric-free PPP solutions, while the positioning accuracy of undifferenced PPP shows more improvement for the GLONASS system. In addition, the GLONASS undifferenced PPP results demonstrate performance advantages in high latitude areas, while this impact is less obvious in the GPS/GLONASS combined configuration. The results have also indicated that the BDS GEO satellites have negative impacts on the undifferenced PPP performance given the current “poor” orbit and clock knowledge of GEO satellites. More generally, the multi-GNSS undifferenced PPP results have shown improvements in the convergence time by more than 60 % in both the single- and dual-frequency PPP results, while the positioning accuracy after convergence indicates no significant improvements for the dual-frequency PPP solutions, but an improvement of about 25 % on average for the single-frequency PPP solutions.
Resumo:
Carrier phase ambiguity resolution over long baselines is challenging in BDS data processing. This is partially due to the variations of the hardware biases in BDS code signals and its dependence on elevation angles. We present an assessment of satellite-induced code bias variations in BDS triple-frequency signals and the ambiguity resolutions procedures involving both geometry-free and geometry-based models. First, since the elevation of a GEO satellite remains unchanged, we propose to model the single-differenced fractional cycle bias with widespread ground stations. Second, the effects of code bias variations induced by GEO, IGSO and MEO satellites on ambiguity resolution of extra-wide-lane, wide-lane and narrow-lane combinations are analyzed. Third, together with the IGSO and MEO code bias variations models, the effects of code bias variations on ambiguity resolution are examined using 30-day data collected over the baselines ranging from 500 to 2600 km in 2014. The results suggest that although the effect of code bias variations on the extra-wide-lane integer solution is almost ignorable due to its long wavelength, the wide-lane integer solutions are rather sensitive to the code bias variations. Wide-lane ambiguity resolution success rates are evidently improved when code bias variations are corrected. However, the improvement of narrow-lane ambiguity resolution is not obvious since it is based on geometry-based model and there is only an indirect impact on the narrow-lane ambiguity solutions.
Resumo:
Public key authentication is the verification of the identity-public key binding, and is foundational to the security of any network. The contribution of this thesis has been to provide public key authentication for a decentralised and resource challenged network such as an autonomous Delay Tolerant Network (DTN). It has resulted in the development and evaluation of a combined co-localisation trust system and key distribution scheme evaluated on a realistic large geographic scale mobility model. The thesis also addresses the problem of unplanned key revocation and replacement without any central authority.