254 resultados para cancer therapy
Resumo:
Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.
Resumo:
Circulating tumour cells (CTCs) have attracted much recent interest in cancer research as a potential biomarker and as a means of studying the process of metastasis. It has long been understood that metastasis is a hallmark of malignancy, and conceptual theories on the basis of metastasis from the nineteenth century foretold the existence of a tumour "seed" which is capable of establishing discrete tumours in the "soil" of distant organs. This prescient "seed and soil" hypothesis accurately predicted the existence of CTCs; microscopic tumour fragments in the blood, at least some of which are capable of forming metastases. However, it is only in recent years that reliable, reproducible methods of CTC detection and analysis have been developed. To date, the majority of studies have employed the CellSearch™ system (Veridex LLC), which is an immunomagnetic purification method. Other promising techniques include microfluidic filters, isolation of tumour cells by size using microporous polycarbonate filters and flow cytometry-based approaches. While many challenges still exist, the detection of CTCs in blood is becoming increasingly feasible, giving rise to some tantalizing questions about the use of CTCs as a potential biomarker. CTC enumeration has been used to guide prognosis in patients with metastatic disease, and to act as a surrogate marker for disease response during therapy. Other possible uses for CTC detection include prognostication in early stage patients, identifying patients requiring adjuvant therapy, or in surveillance, for the detection of relapsing disease. Another exciting possible use for CTC detection assays is the molecular and genetic characterization of CTCs to act as a "liquid biopsy" representative of the primary tumour. Indeed it has already been demonstrated that it is possible to detect HER2, KRAS and EGFR mutation status in breast, colon and lung cancer CTCs respectively. In the course of this review, we shall discuss the biology of CTCs and their role in metastagenesis, the most commonly used techniques for their detection and the evidence to date of their clinical utility, with particular reference to lung cancer.
Resumo:
Androgen-dependent pathways regulate maintenance and growth of normal and malignant prostate tissues. Androgen deprivation therapy (ADT) exploits this dependence and is used to treat metastatic prostate cancer; however, regression initially seen with ADT gives way to development of incurable castration-resistant prostate cancer (CRPC). Although ADT generates a therapeutic response, it is also associated with a pattern of metabolic alterations consistent with metabolic syndrome including elevated circulating insulin. Because CRPC cells are capable of synthesizing androgens de novo, we hypothesized that insulin may also influence steroidogenesis in CRPC. In this study, we examined this hypothesis by evaluating the effect of insulin on steroid synthesis in prostate cancer cell lines. Treatment with 10 nmol/L insulin increased mRNA and protein expression of steroidogenesis enzymes and upregulated the insulin receptor substrate insulin receptor substrate 2 (IRS-2). Similarly, insulin treatment upregulated intracellular testosterone levels and secreted androgens, with the concentrations of steroids observed similar to the levels reported in prostate cancer patients. With similar potency to dihydrotestosterone, insulin treatment resulted in increased mRNA expression of prostate-specific antigen. CRPC progression also correlated with increased expression of IRS-2 and insulin receptor in vivo. Taken together, our findings support the hypothesis that the elevated insulin levels associated with therapeutic castration may exacerbate progression of prostate cancer to incurable CRPC in part by enhancing steroidogenesis.
Resumo:
Ghrelin is a multifunctional hormone, with roles in stimulating appetite and regulating energy balance, insulin secretion and glucose homeostasis. The ghrelin gene locus (GHRL) is highly complex and gives rise to a range of novel transcripts derived from alternative first exons and internally spliced exons. The wild-type transcript encodes a 117 amino acid preprohormone that is processed to yield the 28 amino acid peptide ghrelin. Here, we identified insulin-responsive transcription corresponding to cryptic exons in intron 2 of the human ghrelin gene. A transcript, termed in2c-ghrelin (intron 2-cryptic), was cloned from the testis and the LNCaP prostate cancer cell line. This transcript may encode an 83 AA preproghrelin isoform that codes for the ghrelin, but not obestatin. It is expressed in a limited number of normal tissues and in tumours of the prostate, testis, breast and ovary. Finally, we confirmed that in2c-ghrelin transcript expression, as well as the recently described in1-ghrelin transcript, is significantly upregulated by insulin in cultured prostate cancer cells. Metabolic syndrome and hyperinsulinaemia has been associated with prostate cancer risk and progression. This may be particularly significant after androgen deprivation therapy for prostate cancer, which induces hyperinsulinaemia, and this could contribute to castrate resistant prostate cancer growth. We have previously demonstrated that ghrelin stimulates prostate cancer cell line proliferation in vitro. This study is the first description of insulin regulation of a ghrelin transcript in cancer, and should provide further impetus for studies into the expression, regulation and function of ghrelin gene products.
Resumo:
To the Editor; It was with interest that I read the recent article by Zhang et al. published in Supportive Care in Cancer [1]. This paper highlighted the importance of radiodermatitis (RD) being an unresolved and distressing clinical issue in patients with cancer undergoing radiation therapy. However, I am concerned with a number of clinical and methodological issues within this paper: (i) the clinical and operational definition of prophylaxis and treatment of RD; (ii) the accuracy of the identification of trials; and (iii) the appropriateness of the conduct of the meta-analyses...
Resumo:
The purpose of this paper is to review the incidence of upper-body morbidity (arm and breast symptoms, impairments, and lymphedema), methods for diagnosis, and prevention and treatment strategies. It was also the purpose to highlight the evidence base for integration of prospective surveillance for upper-body morbidity within standard clinical care of women with breast cancer. Between 10% and 64% of women report upper-body symptoms between 6 months and 3 years after breast cancer, and approximately 20% develop lymphedema. Symptoms remain common into longer-term survivorship, and although lymphedema may be transient for some, those who present with mild lymphedema are at increased risk of developing moderate to severe lymphedema. The etiology of morbidity seems to be multifactorial, with the most consistent risk factors being those associated with extent of treatment. However, known risk factors cannot reliably distinguish between those who will and will not develop upper-body morbidity. Upper-body morbidity may be treatable with physical therapy. There is also evidence in support of integrating regular surveillance for upper-body morbidity into the routine care provided to women with breast cancer, with early diagnosis potentially contributing to more effective management and prevention of progression of these conditions.
Resumo:
Background: Recent clinical studies have demonstrated an emerging subgroup of head and neck cancers that are virally mediated. This disease appears to be a distinct clinical entity with patients presenting younger and with more advanced nodal disease, having lower tobacco and alcohol exposure and highly radiosensitive tumours. This means they are living longer, often with the debilitating functional side effects of treatment. The primary objective of this study was to determine how virally mediated nasopharyngeal and oropharyngeal cancers respond to radiation therapy treatment. The aim was to determine risk categories and corresponding adaptive treatment management strategies to proactively manage these patients. Method/Results: 121 patients with virally mediated, node positive nasopharyngeal or oropharyngeal cancer who received radiotherapy treatment with curative intent between 2005 and 2010 were studied. Relevant patient demographics including age, gender, diagnosis, TNM stage, pre-treatment nodal size and dose delivered was recorded. Each patient’s treatment plan was reviewed to determine if another computed tomography (re-CT) scan was performed and at what time point (dose/fraction) this occurred. The justification for this re-CT was determined using four categories: tumour and/or nodal regression, weight loss, both or other. Patients who underwent a re-CT were further investigated to determine whether a new plan was calculated. If a re-plan was performed, the dosimetric effect was quantified by comparing dose volume histograms of planning target volumes and critical structures from the actual treatment delivered and the original treatment plan. Preliminary results demonstrated that 25/121 (20.7%) patients required a re-CT and that these re-CTs were performed between fractions 20 to 25 of treatment. The justification for these re-CTs consisted of a combination of tumour and/or nodal regression and weight loss. 16/25 (13.2%) patients had a replan calculated. 9 (7.4%) of these replans were implemented clinically due to the resultant dosimetric effect calculated. The data collected from this assessment was statistically analysed to identify the major determining factors for patients to undergo a re-CT and/or replan. Specific factors identified included nodal size and timing of the required intervention (i.e. how when a plan is to be adapted). This data was used to generate specific risk profiles that will form the basis of a biologically guided adaptive treatment management strategy for virally mediated head and neck cancer. Conclusion: Preliminary data indicates that virally mediated head and neck cancers respond significantly during radiation treatment (tumour and/or nodal regression and weight loss). Implications of this response are the potential underdosing or overdosing of tumour and/or surrounding critical structures. This could lead to sub-optimal patient outcomes and compromised quality of life. Consequently, the development of adaptive treatment strategies that improve organ sparing for this patient group is important to ensure delivery of the prescribed dose to the tumour volume whilst minimizing the dose received to surrounding critical structures. This could reduce side effects and improve overall patient quality of life. The risk profiles and associated adaptive treatment approaches developed in this study will be tested prospectively in the clinical setting in Phase 2 of this investigation.
Resumo:
Purpose: Virally mediated head and neck cancers (VMHNC) often present with nodal involvement, and are generally considered radioresponsive, resulting in the need for a re-planning CT during radiotherapy (RT) in a subset of patients. We sought to identify a high-risk group based on nodal size to be evaluated in a future prospective adaptive RT trial. Methodology: Between 2005-2010, 121 patients with virally-mediated, node positive nasopharyngeal (EBV positive) or oropharyngeal (HPV positive) cancers, receiving curative intent RT were reviewed. Patients were analysed based on maximum size of the dominant node with a view to grouping them in varying risk categories for the need of re-planning. The frequency and timing of the re-planning scans were also evaluated. Results: Sixteen nasopharyngeal and 105 oropharyngeal tumours were reviewed. Twenty-five (21%) patients underwent a re-planning CT at a median of 22 (range, 0-29) fractions with 1 patient requiring re-planning prior to the commencement of treatment. Based on the analysis, patients were subsequently placed into 3 groups; ≤35mm (Group 1), 36-45mm (Group 2), ≥46mm (Group 3). Re-planning CT’s were performed in Group 1- 8/68 (11.8%), Group 2- 4/28 (14.3%), Group 3- 13/25 (52%). Sample size did not allow statistical analysis to detect a significant difference or exclusion of a lack of difference between the 3 groups. Conclusion: In this series, patients with VMHNC and nodal size > 46mm appear to be a high-risk group for the need of re-planning during a course of definitive radiotherapy. This finding will now be tested in a prospective adaptive RT study.
Resumo:
Purpose: Virally mediated head and neck cancers (VMHNC) often present with nodal involvement, and are generally considered radioresponsive, resulting in the need for a re-planning CT during radiotherapy (RT) in a subset of patients. We sought to identify a high-risk group based on nodal size to be evaluated in a future prospective adaptive RT trial. Methodology: Between 2005-2010, 121 patients with virally-mediated, node positive nasopharyngeal (EBV positive) or oropharyngeal (HPV positive) cancers, receiving curative intent RT were reviewed. Patients were analysed based on maximum size of the dominant node with a view to grouping them in varying risk categories for the need of re-planning. The frequency and timing of the re-planning scans were also evaluated. Results: Sixteen nasopharyngeal and 105 oropharyngeal tumours were reviewed. Twenty-five (21%) patients underwent a re-planning CT at a median of 22 (range, 0-29) fractions with 1 patient requiring re-planning prior to the commencement of treatment. Based on the analysis, patients were subsequently placed into 3 groups; ≤35mm (Group 1), 36-45mm (Group 2), ≥46mm (Group 3). Re-planning CT’s were performed in Group 1- 8/68 (11.8%), Group 2- 4/28 (14.3%), Group 3- 13/25 (52%). Sample size did not allow statistical analysis to detect a significant difference or exclusion of a lack of difference between the 3 groups. Conclusion: In this series, patients with VMHNC and nodal size > 46mm appear to be a high-risk group for the need of re-planning during a course of definitive radiotherapy. This finding will now be tested in a prospective adaptive RT study.
Resumo:
Purpose: Virally mediated head and neck cancers (VMHNC) often present with nodal involvement, and are generally considered radioresponsive, resulting in the need for plan adaptation during radiotherapy in a subset of patients. We sought to identify a high-risk group based on pre-treatment nodal size to be evaluated in a future prospective adaptive radiotherapy trial. Methodology: Between 2005-2010, 121 patients with virally-mediated, node positive nasopharyngeal or oropharyngeal cancers, receiving definitive radiotherapy were reviewed. Patients were analysed based on maximum size of the dominant node at diagnosis with a view to grouping them in varying risk categories for the need of re-planning. The frequency and timing of the re-planning scans were also evaluated. Results: Sixteen nasopharyngeal and 105 oropharyngeal tumours were reviewed. Twenty-five (21%) patients underwent a re-planning CT at a median of 22 (range, 0-29) fractions with 1 patient requiring re-planning prior to the commencement of treatment. Based on the analysis, patients were subsequently placed into 3 groups defined by pre-treatment nodal size; ≤ 35mm (Group 1), 36-45mm (Group 2), ≥ 46mm (Group 3). Applying these groups to the patient cohort, re-planning CT’s were performed in Group 1- 8/68 (11.8%), Group 2- 4/28 (14.3%), Group 3- 13/25 (52%). Conclusion: In this series, patients with VMHNC and nodal size > 46mm appear to be a high-risk group for the need of plan adaptation during a course of definitive radiotherapy. This finding will now be tested in a prospective adaptive radiotherapy study.
Resumo:
The actual proportion of eligible people who participate in clinical trials is low. Consequently, a qualitative study of the willingness of women who are postmenopausal to participate in a long-term randomized control trial of hormone replacement therapy (HRT) designed to investigate the prevention of degenerative diseases was conducted. Focus group methodology was employed to explore the personal and social aspects of decision making about trial participation. Participants were randomly selected from the patient age-sex registers of four University of Adelaide general practices. Twenty-one women participated in four focus groups. The reasons for and against trial participation were examined using qualitative content analysis; ( n = 18) women were unwilling to participate in the trial. The lack of perceived individual benefit, minimal altruism, the risk of breast cancer and side effects, not wanting to take unnecessary medication, a ten-year commitment, and negative experiences of HRT use, were the main reasons given for not entering the trial. Of the few women ( n = 3) who clearly would enter the trial, free prescriptions and a positive history of using HRT were the main reasons for participation. The perceived disadvantages of clinical trials of HRT deter women from participating in a long-term clinical trial of HRT. An investment in education and information to eligible participants about both the risks and potential benefits of HRT may improve trial recruitment.
Resumo:
Obesity and type 2 diabetes are recognised risk factors for the development of some cancers and, increasingly, predict more aggressive disease, treatment failure, and cancer-specific mortality. Many factors may contribute to this clinical observation. Hyperinsulinaemia, dyslipidaemia, hypoxia, ER stress, and inflammation associated with expanded adipose tissue are thought to be among the main culprits driving malignant growth and cancer advancement. This observation has led to the proposal of the potential utility of “old players” for the treatment of type 2 diabetes and metabolic syndrome as new cancer adjuvant therapeutics. Androgen-regulated pathways drive proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen deprivation therapy (ADT) exploits this dependence to systemically treat advanced prostate cancer resulting in anticancer response and improvement of cancer symptoms. However, the initial therapeutic response from ADT eventually progresses to castrate resistant prostate cancer (CRPC) which is currently incurable. ADT rapidly induces hyperinsulinaemia which is associated with more rapid treatment failure. We discuss current observations of cancer in the context of obesity, diabetes, and insulin-lowering medication. We provide an update on current treatments for advanced prostate cancer and discuss whether metabolic dysfunction, developed during ADT, provides a unique therapeutic window for rapid translation of insulin-sensitising medication as combination therapy with antiandrogen targeting agents for the management of advanced prostate cancer.
Resumo:
Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.
Resumo:
Purpose Virally mediated head and neck cancers (VMHNC) often present with nodal involvement and are highly radioresponsive, meaning that treatment plan adaptation during radiotherapy (RT) in a subset of patients is required. We sought to determine potential risk profiles and a corresponding adaptive treatment strategy for these patients. Methodology 121 patients with virally mediated, node positive nasopharyngeal (Epstein Barr Virus positive) or oropharyngeal (Human Papillomavirus positive) cancers, receiving curative intent RT were reviewed. The type, frequency and timing of adaptive interventions, including source-to-skin distance (SSD) corrections, re-scanning and re-planning, were evaluated. Patients were reviewed based on the maximum size of the dominant node to assess the need for plan adaptation. Results Forty-six patients (38%) required plan adaptation during treatment. The median fraction at which the adaptive intervention occurred was 26 for SSD corrections and 22 for re-planning CTs. A trend toward 3 risk profile groupings was discovered: 1) Low risk with minimal need (< 10%) for adaptive intervention (dominant pre-treatment nodal size of ≤ 35 mm), 2) Intermediate risk with possible need (< 20%) for adaptive intervention (dominant pre-treatment nodal size of 36 mm – 45 mm) and 3) High-risk with increased likelihood (> 50%) for adaptive intervention (dominant pre-treatment nodal size of ≥ 46 mm). Conclusion In this study, patients with VMHNC and a maximum dominant nodal size of > 46 mm were identified at a higher risk of requiring re-planning during a course of definitive RT. Findings will be tested in a future prospective adaptive RT study.
Resumo:
NCOA3 is a known low to moderate-risk breast cancer susceptibility gene, amplified in 5–10% and over expressed in about 60% of breast tumours. Additionally, this over expression is associated with Tamoxifen resistance and poor prognosis. Previously, two variants of NCOA3, 1758G > C and 2880A > G have been associated with breast cancer in two independent populations. Here we assessed the influence of the two NCOA3 variants on breast cancer risk by genotyping an Australian case–control study population. 172 cases and 178 controls were successfully genotyped for the 1758G > C variant and 186 cases and 182 controls were successfully genotyped for the 2880A > G variant using high-resolution melt analysis (HRM). The genotypes of the 1758G > C variant were validated by sequencing. χ2 tests were performed to determine if significant differences exist in the genotype and allele frequencies between the cases and controls. χ2 analysis returned no statistically significant difference (p > 0.05) for genotype frequencies between cases and controls for 1758G > C (χ2 = 0.97, p = 0.6158) or 2880A > G (χ2 = 2.09, p = 0.3516). Similarly, no statistical difference was observed for allele frequencies for 1758G > C (χ2 = 0.07, p = 0.7867) or 2880A > G (χ2 = 0.04, p = 0.8365). Haplotype analysis of the two SNPs also showed no difference between the cases and the controls (p = 0.9585). Our findings in an Australian Caucasian population composed of breast cancer sufferers and an age matched control population did not support the findings of previous studies demonstrating that these markers play a significant role in breast cancer susceptibility. Here, no significant difference was detected between breast cancer patients and healthy matched controls by either the genotype or allele frequencies for the investigated variants (all p ≥ 0.05). While an association of the two variants and breast cancer was not detected in our case–control study population, exploring these variants in a larger population of the same kind may obtain results in concordance with previous studies. Given the importance of NCOA3 and its involvement in biological processes involved in breast cancer and the possible implications variants of the gene could have on the response to Tamoxifen therapy, NCOA3 remains a candidate for further investigations.