209 resultados para blue light
Light sensitive alkoxyamines: New efficient agents for nitroxide mediated photopolymerisation (NMP2)
Resumo:
This paper examines the feasibility of using vertical light pipes to naturally illuminate the central core of a multilevel building not reached by window light. The challenges addressed were finding a method to extract and distribute equal amounts of light at each level and designing collectors to improve the effectiveness of vertical light pipes in delivering low elevation sunlight to the interior. Extraction was achieved by inserting partially reflecting cones within transparent sections of the pipes at each floor level. Theory was formulated to estimate the partial reflectance necessary to provide equal light extraction at each level. Designs for daylight collectors formed from laser cut panels tilted above the light pipe were developed and the benefits and limitations of static collectors as opposed to collectors that follow the sun azimuth investigated. Performance was assessed with both basic and detailed mathematical simulation and by observations made with a five level model building under clear sky conditions.
Resumo:
This project was a step forward in developing new recyclable photocatalysts for chemical reactions. These new photocatalysts can facilitate reactions by using visible light under moderate reaction conditions which is suitable for a sustainable, green and eco-friendly modern chemical industry. The outcome of the study greatly extended our understanding in metal nanoparticle photocatalysis, which reveals new photocatalytic mechanisms for the controlled transformation of chemical reactions. The prospect of sunlight irradiation driving chemical reactions may provide opportunity for the organic synthesis via a more controlled, simplified, and greener process in the future.
Resumo:
The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion.
Resumo:
Light-n:doubt is an exhibition exploring the changing landscape between light and sculpture at 65 Hindley Street, Adelaide in 2003. The exhibition references research through the notion of 'otherness'. This show of work foregrounds the play between the materiality and idea of the object and what it 'speaks', the symbolic resonance of the object within space, and the role of the viewer in constructing language through form. Light-n:doubt at 64 Hindley Street, Adelaide. 20th-28th November, 2003. 11am-7pm.
Resumo:
Iron species are one of the least toxic and least expensive substances that are photocatalytic in the visible region of the spectrum. Therefore, this article focuses on iron-based photocatalysts sensitive to visible light. Photo-Fenton reactions are considered with respect to those assisted by and involve the in situ production of H2O2. The possible role that photoactive iron species play by interacting with natural organic matter in water purification in the natural environment is considered. The review also considered photosensitization by phthalocyanines and the potential role that layered double hydroxides may have not only as catalyst supports but also as photosensitizers themselves. Finally, photocatalytic disinfection of water is discussed, and the desirability of standardized metrics and experimental conditions to assist in the comparative evaluation of photocatalysts is highlighted.
Resumo:
As a precursor to the 2014 G20 Leaders’ Summit held in Brisbane, Australia, the Queensland Government sponsored a program of G20 Cultural Celebrations, designed to showcase the Summit’s host city. The cultural program’s signature event was the Colour Me Brisbane festival, a two-week ‘citywide interactive light and projection installations’ festival that was originally slated to run from 24 October to 9 November, but which was extended due to popular demand to conclude with the G20 Summit itself on 16 November. The Colour Me Brisbane festival comprised a series projection displays that promoted visions of the city’s past, present, and future at landmark sites and iconic buildings throughout the city’s central business district and thus transformed key buildings into forms of media architecture. In some instances the media architecture installations were interactive, allowing the public to control aspects of the projections through a computer interface situated in front of the building; however, the majority of the installations were not interactive in this sense. The festival was supported by a website that included information regarding the different visual and interactive displays and links to social media to support public discussion regarding the festival (Queensland Government 2014). Festival-goers were also encouraged to follow a walking-tour map of the projection sites that would take them on a 2.5 kilometre walk from Brisbane’s cultural precinct, through the city centre, concluding at parliament house. In this paper, we investigate the Colour Me Brisbane festival and the broader G20 Cultural Celebrations as a form of strategic placemaking—designed, on the one hand, to promote Brisbane as a safe, open, and accessible city in line with the City Council’s plan to position Brisbane as a ‘New World City’ (Brisbane City Council 2014). On the other hand, it was deployed to counteract growing local concerns and tensions over the disruptive and politicised nature of the G20 Summit by engaging the public with the city prior to the heightened security and mobility restrictions of the Summit weekend. Harnessing perspectives from media architecture (Brynskov et al. 2013), urban imaginaries (Cinar & Bender 2007), and social media analysis, we take a critical approach to analysing the government-sponsored projections, which literally projected the city onto itself, and public responses to them via the official, and heavily promoted, social media hashtags (#colourmebrisbane and #g20cultural). Our critical framework extends the concepts of urban phantasmagoria and urban imaginaries into the emerging field of media architecture to scrutinise its potential for increased political and civic engagement. Walter Benjamin’s concept of phantasmagoria (Cohen 1989; Duarte, Firmino, & Crestani 2014) provides an understanding of urban space as spectacular projection, implicated in commodity and techno-culture. The concept of urban imaginaries (Cinar & Bender 2007; Kelley 2013)—that is, the ways in which citizens’ experiences of urban environments are transformed into symbolic representations through the use of imagination—similarly provides a useful framing device in thinking about the Colour Me Brisbane projections and their relation to the construction of place. Employing these critical frames enables us to examine the ways in which the installations open up the potential for multiple urban imaginaries—in the sense that they encourage civic engagement via a tangible and imaginative experience of urban space—while, at the same time, supporting a particular vision and way of experiencing the city, promoting a commodified, sanctioned form of urban imaginary. This paper aims to dissect the urban imaginaries intrinsic to the Colour Me Brisbane projections and to examine how those imaginaries were strategically deployed as place-making schemes that choreograph reflections about and engagement with the city.
Resumo:
There is strong evidence across the media that humanity has finally come to recognize the certainty and imminence of a global environmental crisis due to man-triggered ecological alterations. This widespread recognition of what is happening around us has matured even further as studies acknowledging that everything on Earth is interconnected begin to mount across various branches of learning. The appreciation of this simple linear and two-dimensional relationship implies enormous consequences for economic and management studies, as alternative business models will eventually have to supersede the old practices that still govern major industry sectors (e.g. energy, cement, agriculture, automotive, pharmaceutical, etc.). This paper argues that traditional knowledge found in developing countries can sometimes harness the potential of sparking genuine alternatives to established business practices. With a focus on the most fundamental geochemical cycles on Earth − nitrogen, water, and carbon − and the primary resources they govern (soil, water, and air), three case studies are presented to illustrate how traditional knowledge in the context of GRI (Grassroots Innovation) projects can lead to challenge the dominant logic, when allowed to thrive in terms of adoption and scalability.
Resumo:
Maude Barlow is the chairperson of the Council of Canadians, and the founder of the Blue Planet Project. She is a recipient of Sweden’s Right Livelihood Award, and a Lannan Cultural Freedom Fellowship. As well as being a noted human rights and trade activist, Barlow is the author of a number of books on water rights — including Blue Gold, Blue Covenant, and Blue Future. She has been particularly vocal on the impact of trade and investment agreements upon water rights. Barlow has been critical of the push to include investor-state dispute settlement clauses in trade agreements — such as the Comprehensive Economic and Trade Agreement (CETA) between Canada and the European Union, the Trans-Pacific Partnership (TPP), and the Trans-Atlantic Trade and Investment Partnership Agreement (TTIP). She has also been concerned by the Trade in Services Agreement (TISA) leaked by WikiLeaks.
Resumo:
This article considers the challenges posed to intellectual property law by the emerging field of bioinformatics. It examines the intellectual property strategies of established biotechnology companies, such as Celera Genomics, and information technology firms entering into the marketplace, such as IBM. First this paper argues that copyright law is not irrelevant to biotechnology, as some commentators would suggest. It claims that the use of copyright law and contract law is fundamental to the protection of biomedical and genomic databases. Second this article questions whether biotechnology companies are exclusively interested in patenting genes and genetics sequences. Recent evidence suggests that biotechnology companies and IT firms are patenting bioinformatics software and Internet business methods, as well as underlying instrumentation such as microarrays and genechips. Finally, this paper evaluates what impact the privatisation of bioinformatics will have on public research and scientific communication. It raises important questions about integration, interoperability, and the risks of monopoly. It finally considers whether open source software such as the Ensembl Project and peer to peer technology like DSAS will be able to counter this trend of privatisation.
Resumo:
Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture the dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area-a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350a €...cd/m 2, ON/OFF ratio > 10 4 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (f cut-off = 2.6a €...kHz) compared to single layer LEFETs the results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications.
Resumo:
Light emitting field effect transistors (LEFETs) are emerging as a multi-functional class of optoelectronic devices. LEFETs can simultaneously execute light emission and the standard logic functions of a transistor in a single architecture. However, current LEFET architectures deliver either high brightness or high efficiency but not both concurrently, thus limiting their use in technological applications. Here we show an LEFET device strategy that simultaneously improves brightness and efficiency. The key step change in LEFET performance arises from the bottom gate top-contact device architecture in which the source/drain electrodes are semitransparent and the active channel contains a bi-layer comprising of a high mobility charge-transporting polymer, and a yellow-green emissive polymer. A record external quantum efficiency (EQE) of 2.1% at 1000cd/m2 is demonstrated for polymer based bilayer LEFETs.
Resumo:
An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.