177 resultados para bigdata, data stream processing, dsp, apache storm, cyber security


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present research adapting a state of the art condition-invariant robotic place recognition algorithm to the role of automated inter- and intra-image alignment of sensor observations of environmental and skin change over time. The approach involves inverting the typical criteria placed upon navigation algorithms in robotics; we exploit rather than attempt to fix the limited camera viewpoint invariance of such algorithms, showing that approximate viewpoint repetition is realistic in a wide range of environments and medical applications. We demonstrate the algorithms automatically aligning challenging visual data from a range of real-world applications: ecological monitoring of environmental change, aerial observation of natural disasters including flooding, tsunamis and bushfires and tracking wound recovery and sun damage over time and present a prototype active guidance system for enforcing viewpoint repetition. We hope to provide an interesting case study for how traditional research criteria in robotics can be inverted to provide useful outcomes in applied situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the development of trust in the use of Open Data through incorporation of appropriate authentication and integrity parameters for use by end user Open Data application developers in an architecture for trustworthy Open Data Services. The advantages of this architecture scheme is that it is far more scalable, not another certificate-based hierarchy that has problems with certificate revocation management. With the use of a Public File, if the key is compromised: it is a simple matter of the single responsible entity replacing the key pair with a new one and re-performing the data file signing process. Under this proposed architecture, the the Open Data environment does not interfere with the internal security schemes that might be employed by the entity. However, this architecture incorporates, when needed, parameters from the entity, e.g. person who authorized publishing as Open Data, at the time that datasets are created/added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a MATLAB/Simulink model of a controller for a three-phase, four-wire, grid-interactive inverter. The model provides capacity for simulating the performance of power electroinic hardware, as well as code generation for an embedded controller. The implemented hardware topology is a three-leg bridge with a neutral connection to the centre-tap of the DC bus. An LQR-based current controller and MAF-based phase detector are implemented. The model is configured for code generation for a Texas Instruments TMS320F28335 Digital Signal Processor (DSP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes the addition of a weighted median Fisher discriminator (WMFD) projection prior to length-normalised Gaussian probabilistic linear discriminant analysis (GPLDA) modelling in order to compensate the additional session variation. In limited microphone data conditions, a linear-weighted approach is introduced to increase the influence of microphone speech dataset. The linear-weighted WMFD-projected GPLDA system shows improvements in EER and DCF values over the pooled LDA- and WMFD-projected GPLDA systems in inter-view-interview condition as WMFD projection extracts more speaker discriminant information with limited number of sessions/ speaker data, and linear-weighted GPLDA approach estimates reliable model parameters with limited microphone data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is emerging evidence that alterations in dopaminergic transmission can influence semantic processing, yet the neural mechanisms involved are unknown. The influence of levodopa (L-DOPA) on semantic priming was investigated in healthy individuals (n=20) using event-related functional magnetic resonance imaging with a randomized, double-blind crossover design. Critical prime-target pairs consisted of a lexical ambiguity prime and 1) a target related to the dominant meaning of the prime (e.g., bank-money), 2) a target related to the subordinate meaning (e.g., fence-sword), or 3) an unrelated target (e.g., ball-desk). Behavioral data showed that both dominant and subordinate meanings were primed on placebo. In contrast, there was preserved priming of dominant meanings and no significant priming of subordinate meanings on L-DOPA, the latter associated with decreased anterior cingulate and dorsal prefrontal cortex activity. Dominant meaning activation on L-DOPA was associated with increased activity in the left rolandic operculum and left middle temporal gyrus. These findings suggest that L-DOPA enhances frequency-based semantic focus via prefrontal and temporal modulation of automatic semantic priming and through engagement of anterior cingulate mechanisms supporting attentional/controlled priming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic recordings of the environment provide an effective means to monitor bird species diversity. To facilitate exploration of acoustic recordings, we describe a content-based birdcall retrieval algorithm. A query birdcall is a region of spectrogram bounded by frequency and time. Retrieval depends on a similarity measure derived from the orientation and distribution of spectral ridges. The spectral ridge detection method caters for a broad range of birdcall structures. In this paper, we extend previous work by incorporating a spectrogram scaling step in order to improve the detection of spectral ridges. Compared to an existing approach based on MFCC features, our feature representation achieves better retrieval performance for multiple bird species in noisy recordings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Self-report measures are typically used to assess the effectiveness of road safety advertisements. However, psychophysiological measures of persuasive processing (i.e., skin conductance response [SCR]) and objective driving measures of persuasive outcomes (i.e., in-vehicle GPS devices) may provide further insights into the effectiveness of these advertisements. This study aimed to explore the persuasive processing and outcomes of two anti-speeding advertisements by incorporating both self-report and objective measures of speeding behaviour. In addition, this study aimed to compare the findings derived from these different measurement approaches. Methods Young drivers (N = 20, Mage = 21.01 years) viewed either a positive or negative emotion-based anti-speeding television advertisement. Whilst viewing the advertisement, SCR activity was measured to assess ad-evoked arousal responses. The RoadScout® GPS device was then installed into participants’ vehicles for one week to measure on-road speed-related driving behaviour. Self-report measures assessed persuasive processing (emotional and arousal responses) and actual driving behaviour. Results There was general correspondence between the self-report measures of arousal and the SCR and between the self-report measure of actual driving behaviour and the objective driving data (as assessed via the GPS devices). Conclusions This study provides insights into how psychophysiological and GPS devices could be used as objective measures in conjunction with self-report measures to further understand the persuasive processes and outcomes of emotion-based anti-speeding advertisements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed systems are widely used for solving large-scale and data-intensive computing problems, including all-to-all comparison (ATAC) problems. However, when used for ATAC problems, existing computational frameworks such as Hadoop focus on load balancing for allocating comparison tasks, without careful consideration of data distribution and storage usage. While Hadoop-based solutions provide users with simplicity of implementation, their inherent MapReduce computing pattern does not match the ATAC pattern. This leads to load imbalances and poor data locality when Hadoop's data distribution strategy is used for ATAC problems. Here we present a data distribution strategy which considers data locality, load balancing and storage savings for ATAC computing problems in homogeneous distributed systems. A simulated annealing algorithm is developed for data distribution and task scheduling. Experimental results show a significant performance improvement for our approach over Hadoop-based solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in data center dependent services has made energy optimization of data centers one of the most exigent challenges in today's Information Age. The necessity of green and energy-efficient measures is very high for reducing carbon footprint and exorbitant energy costs. However, inefficient application management of data centers results in high energy consumption and low resource utilization efficiency. Unfortunately, in most cases, deploying an energy-efficient application management solution inevitably degrades the resource utilization efficiency of the data centers. To address this problem, a Penalty-based Genetic Algorithm (GA) is presented in this paper to solve a defined profile-based application assignment problem whilst maintaining a trade-off between the power consumption performance and resource utilization performance. Case studies show that the penalty-based GA is highly scalable and provides 16% to 32% better solutions than a greedy algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few years, the virtual machine (VM) placement problem has been studied intensively and many algorithms for the VM placement problem have been proposed. However, those proposed VM placement algorithms have not been widely used in today's cloud data centers as they do not consider the migration cost from current VM placement to the new optimal VM placement. As a result, the gain from optimizing VM placement may be less than the loss of the migration cost from current VM placement to the new VM placement. To address this issue, this paper presents a penalty-based genetic algorithm (GA) for the VM placement problem that considers the migration cost in addition to the energy-consumption of the new VM placement and the total inter-VM traffic flow in the new VM placement. The GA has been implemented and evaluated by experiments, and the experimental results show that the GA outperforms two well known algorithms for the VM placement problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although live VM migration has been intensively studied, the problem of live migration of multiple interdependent VMs has hardly been investigated. The most important problem in the live migration of multiple interdependent VMs is how to schedule VM migrations as the schedule will directly affect the total migration time and the total downtime of those VMs. Aiming at minimizing both the total migration time and the total downtime simultaneously, this paper presents a Strength Pareto Evolutionary Algorithm 2 (SPEA2) for the multi-VM migration scheduling problem. The SPEA2 has been evaluated by experiments, and the experimental results show that the SPEA2 can generate a set of VM migration schedules with a shorter total migration time and a shorter total downtime than an existing genetic algorithm, namely Random Key Genetic Algorithm (RKGA). This paper also studies the scalability of the SPEA2.