843 resultados para automatic assessment
Resumo:
Few studies have evaluated the reliability of lifetime sun exposure estimated from inquiring about the number of hours people spent outdoors in a given period on a typical weekday or weekend day (the time-based approach). Some investigations have suggested that women have a particularly difficult task in estimating time outdoors in adulthood due to their family and occupational roles. We hypothesized that people might gain additional memory cues and estimate lifetime hours spent outdoors more reliably if asked about time spent outdoors according to specific activities (an activity-based approach). Using self-administered, mailed questionnaires, test-retest responses to time-based and to activity-based approaches were evaluated in 124 volunteer radiologic technologist participants from the United States: 64 females and 60 males 48 to 80 years of age. Intraclass correlation coefficients (ICC) were used to evaluate the test-retest reliability of average number of hours spent outdoors in the summer estimated for each approach. We tested the differences between the two ICCs, corresponding to each approach, using a t test with the variance of the difference estimated by the jackknife method. During childhood and adolescence, the two approaches gave similar ICCs for average numbers of hours spent outdoors in the summer. By contrast, compared with the time-based approach, the activity-based approach showed significantly higher ICCs during adult ages (0.69 versus 0.43, P = 0.003) and over the lifetime (0.69 versus 0.52, P = 0.05); the higher ICCs for the activity-based questionnaire were primarily derived from the results for females. Research is needed to further improve the activity-based questionnaire approach for long-term sun exposure assessment. (Cancer Epidemiol Biomarkers Prev 2009;18(2):464–71)
Resumo:
Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.
Resumo:
This paper goes beyond the existing literature and explores the innovative topic of designing criterion-referenced assessment for online discussion forums. There are several benefits of embedding online discussion forums into subjects including engaging students in collaborative learning, and encouraging deeper analysis, critical thinking and reflection. Using the assessment principles of validity, reliability and transparency, this paper offers a range of practical strategies to tutors who plan to develop criterion-referenced assessment as opposed to norm-referenced assessment for online discussion forums, applies the assessment principles in the context of an undergraduate law subject, and exemplars a rubric for an online discussion forum in a work placement subject.
Resumo:
The middle years of schooling are increasingly recognised as a crucial stage in students' lives, one that has significant consequences for ongoing educational success. International research indicates that young adolescents benefit from programs designed especially for their needs. Teaching Middle Years offers a systematic overview of the philosophy, principles and issues in middle schooling. It includes contributions from academics and school-based practitioners on intellectual and emotional development in early adolescence, pedagogy, curriculum and assessment of middle years students. This second edition is fully revised to reflect the latest research findings. It includes new chapters on students with diverse needs, school partnerships with families and community, and effective team teaching. Also new to this edition is a chapter that brings middle schooling concepts to life by providing real examples of reform in action.
Resumo:
The middle years of schooling are increasingly recognised as a crucial stage in students' lives, one that has significant consequences for ongoing educational success. International research indicates that young adolescents benefit from programs designed especially for their needs, and the middle years have become an important reform issue for education systems. Teaching Middle Years offers a systematic overview of the philosophy, principles and issues in middle schooling. It includes contributions from academics and school-based practitioners on intellectual and emotional development in early adolescence, pedagogy, curriculum and assessment of middle years students. Written for teachers, student teachers, education leaders and policy makers, Teaching Middle Years is an essential resource for anyone involved in educating young adolescents. Teaching Middle Years is the first comprehensive Australian book to match and surpass the quality of many overseas publications.'
Resumo:
Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.
Resumo:
The concept of star rating council facilities has progressively gained traction in Australia following the work of Dean Taylor at Marochy Shire Council in Queensland in 2006 – 2007 and more recently by the Victorian STEP asset management program. The following paper provides a brief discussion on the use and merits of star rating within community asset management. We suggest that the current adoption of the star rating system to manage community investment in services is lacking in consistency. It is suggested that the major failing is a lack of clear understanding in the purpose being served by the systems. The discussion goes on to make some recommendations on how the concept of a star system could be further enhanced to serve the needs of our communities better.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.
Resumo:
Economics education research studies conducted in the UK, USA and Australia to investigate the effects of learning inputs on academic performance have been dominated by the input-output model (Shanahan and Meyer, 2001). In the Student Experience of Learning framework, however, the link between learning inputs and outputs is mediated by students' learning approaches which in turn are influenced by their perceptions of the learning contexts (Evans, Kirby, & Fabrigar, 2003). Many learning inventories such as Biggs' Study Process Questionnaires and Entwistle and Ramsden' Approaches to Study Inventory have been designed to measure approaches to academic learning. However, there is a limitation to using generalised learning inventories in that they tend to aggregate different learning approaches utilised in different assessments. As a result, important relationships between learning approaches and learning outcomes that exist in specific assessment context(s) will be missed (Lizzio, Wilson, & Simons, 2002). This paper documents the construction of an assessment specific instrument to measure learning approaches in economics. The post-dictive validity of the instrument was evaluated by examining the association of learning approaches to students' perceived assessment demand in different assessment contexts.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus for the assessment of osteoporosis was first described within this journal 25 years ago. It was recognized in 2006 by Universities UK as being one of the ‘100 discoveries and developments in UK Universities that have changed the world’ over the past 50 years. In 2008, the UK's Department of Health also recognized BUA assessment of osteoporosis in a publication highlighting 11 projects that have contributed to ‘60 years of NHS research benefiting patients’. The BUA technique has been extensively clinically validated and is utilized worldwide, with at least seven commercial systems currently providing calcaneal BUA measurement. However, there is still no fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone. This review aims to provide an ‘engineering in medicine’ perspective and proposes a new paradigm based upon phase cancellation due to variation in propagation transit time across the receive transducer face to explain the non-linear relationship between BUA and bone volume fraction in cancellous bone.
Resumo:
Prawns are a substantial Australian resource but presently are processed in a very labour-intensive manner. A prototype system has been developed for automatically grading and packing prawns into single-layer 'consumer packs' in which each prawn is approximately straight and has the same orientation. The novel technology includes a machine vision system that has been specially programmed to calculate relevant parameters at high speed and a gripper mechanism that can acquire, straighten and place prawns of various sizes. The system can be implemented on board a trawler or in an onshore processing facility. © 1993.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.
Resumo:
Calibration of movement tracking systems is a difficult problem faced by both animals and robots. The ability to continuously calibrate changing systems is essential for animals as they grow or are injured, and highly desirable for robot control or mapping systems due to the possibility of component wear, modification, damage and their deployment on varied robotic platforms. In this paper we use inspiration from the animal head direction tracking system to implement a self-calibrating, neurally-based robot orientation tracking system. Using real robot data we demonstrate how the system can remove tracking drift and learn to consistently track rotation over a large range of velocities. The neural tracking system provides the first steps towards a fully neural SLAM system with improved practical applicability through selftuning and adaptation.