515 resultados para anthropogenic environment
Resumo:
Proceedings of the Design Theme Postgraduate Student Conference, held 10th September 2008 at Queensland University of Technology.
Resumo:
The flood flow in urbanised areas constitutes a major hazard to the population and infrastructure as seen during the summer 2010-2011 floods in Queensland (Australia). Flood flows in urban environments have been studied relatively recently, although no study considered the impact of turbulence in the flow. During the 12-13 January 2011 flood of the Brisbane River, some turbulence measurements were conducted in an inundated urban environment in Gardens Point Road next to Brisbane's central business district (CBD) at relatively high frequency (50 Hz). The properties of the sediment flood deposits were characterised and the acoustic Doppler velocimeter unit was calibrated to obtain both instantaneous velocity components and suspended sediment concentration in the same sampling volume with the same temporal resolution. While the flow motion in Gardens Point Road was subcritical, the water elevations and velocities fluctuated with a distinctive period between 50 and 80 s. The low frequency fluctuations were linked with some local topographic effects: i.e, some local choke induced by an upstream constriction between stairwells caused some slow oscillations with a period close to the natural sloshing period of the car park. The instantaneous velocity data were analysed using a triple decomposition, and the same triple decomposition was applied to the water depth, velocity flux, suspended sediment concentration and suspended sediment flux data. The velocity fluctuation data showed a large energy component in the slow fluctuation range. For the first two tests at z = 0.35 m, the turbulence data suggested some isotropy. At z = 0.083 m, on the other hand, the findings indicated some flow anisotropy. The suspended sediment concentration (SSC) data presented a general trend with increasing SSC for decreasing water depth. During a test (T4), some long -period oscillations were observed with a period about 18 minutes. The cause of these oscillations remains unknown to the authors. The last test (T5) took place in very shallow waters and high suspended sediment concentrations. It is suggested that the flow in the car park was disconnected from the main channel. Overall the flow conditions at the sampling sites corresponded to a specific momentum between 0.2 to 0.4 m2 which would be near the upper end of the scale for safe evacuation of individuals in flooded areas. But the authors do not believe the evacuation of individuals in Gardens Point Road would have been safe because of the intense water surges and flow turbulence. More generally any criterion for safe evacuation solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by the flow turbulence, water depth fluctuations and water surges.
Resumo:
Increasingly scientists are using collections of software tools in their research. These tools are typically used in concert, often necessitating laborious and error-prone manual data reformatting and transfer. We present an intuitive workflow environment to support scientists with their research. The workflow, GPFlow, wraps legacy tools, presenting a high level, interactive web-based front end to scientists. The workflow backend is realized by a commercial grade workflow engine (Windows Workflow Foundation). The workflow model is inspired by spreadsheets and is novel in its support for an intuitive method of interaction enabling experimentation as required by many scientists, e.g. bioinformaticians. We apply GPFlow to two bioinformatics experiments and demonstrate its flexibility and simplicity.
Resumo:
Abstract]: Traditional technology adoption models identified ‘ease of use’ and ‘usefulness’ as the dominating factors for technology adoption. However, recent studies in healthcare have established that these two factors are not always reliable on their own and other factors may influence technology adoption. To establish the identity of these additional factors, a mixed method approach was used and data were collected through interviews and a survey. The survey instrument was specifically developed for this study so that it is relevant to the Indian healthcare setting. We identified clinical management and technological barriers as the dominant factors influencing the wireless handheld technology adoption in the Indian healthcare environment. The results of this study showed that new technology models will benefit by considering the clinical influences of wireless handheld technology, in addition to known factors. The scope of this study is restricted to wireless handheld devices such as PDAs, smart phones, and handheld PCs Gururajan, Raj and Hafeez-Baig, Abdul and Gururajan, Vijaya
Resumo:
The use of visual features in the form of lip movements to improve the performance of acoustic speech recognition has been shown to work well, particularly in noisy acoustic conditions. However, whether this technique can outperform speech recognition incorporating well-known acoustic enhancement techniques, such as spectral subtraction, or multi-channel beamforming is not known. This is an important question to be answered especially in an automotive environment, for the design of an efficient human-vehicle computer interface. We perform a variety of speech recognition experiments on a challenging automotive speech dataset and results show that synchronous HMM-based audio-visual fusion can outperform traditional single as well as multi-channel acoustic speech enhancement techniques. We also show that further improvement in recognition performance can be obtained by fusing speech-enhanced audio with the visual modality, demonstrating the complementary nature of the two robust speech recognition approaches.