209 resultados para alternative fuel
Resumo:
Analysis of the particulate size and number concentration emissions from a fleet of inner city medium duty CNG buses was conducted using the newly available Diffusion Size Classifier in comparison with more traditional SMPS's and CPC's. Studies were conducted at both steady state and transient driving modes on a vehicle dynamometer utilising a CVS dilution system. Comparative analysis of the results showed that the DiSC provided equivalent information during steady state conditions and was able to provide additional information during transient conditions, namely, the modal diameter of the particle size distribution.
Resumo:
Exhaust emissions from motor vehicles vary widely and depend on factors such as engine operating conditions, fuel, age, mileage and service history. A method has been devised to rapidly identify high-polluting vehicles as they travel on the road. The method is able to monitor emissions from a large number of vehicles in a short time and avoids the need to conduct expensive and time consuming tests on chassis dynamometers. A sample of the exhaust plume is captured as each vehicle passes a roadside monitoring station and the pollutant emission factors are calculated from the measured concentrations using carbon dioxide as a tracer. Although, similar methods have been used to monitor soot and gaseous mass emissions, to-date it has not been used to monitor particle number emissions from a large fleet of vehicles. This is particularly important as epidemiological studies have shown that particle number concentration is an important parameter in determining adverse health effects. The method was applied to measurements of particle number emissions from individual buses in the Brisbane City Council diesel fleet operating on the South-East Busway. Results indicate that the particle number emission factors are gamma- distributed, with a high proportion of the emissions being emitted by a small percentage of the buses. Although most of the high-emitters are the oldest buses in the fleet, there are clear exceptions, with some newer buses emitting as much. We attribute this to their recent service history, particularly pertaining to improper tuning of the engines. We recommend that a targeted correction program would be a highly effective measure in mitigating urban environmental pollution.
Resumo:
Sustainable harvesting of grasslands can buffer large scale wildfires and the harvested biomass can be used for various products. Spinifex (Triodia spp.) grasslands cover ≈30% of the Australian continent and form the dominant vegetation in the driest regions. Harvesting near settlements is being considered as a means to reduce the occurrence and intensity of wildfires and to source biomaterials for sustainable desert living. However, it is unknown if harvesting spinifex grasslands can be done sustainably without loss of biodiversity and ecosystem function. We examined the trajectory of plant regeneration of burned and harvested spinifex grassland, floristic diversity, nutrient concentrations in soil and plants, and seed germination in controlled ex situ conditions. After two to three years of burning or harvesting in dry or wet seasons, species richness, diversity, and concentrations of most nutrients in soil and leaves of regenerating spinifex plants were overall similar in burned and harvested plots. Germination tests showed that 20% of species require fire-related cues to trigger germination, indicating that fire is essential for the regeneration of some species. Further experimentation should evaluate these findings and explore if harvesting and intervention, such as sowing of fire-cued seeds, allow sustainable, localised harvesting of spinifex grasslands.
Resumo:
This study investigates the price linkage among the US major energy sources, considering structural breaks in time series, to provide information for diversifying the US energy sources. We find that only a weak linkage sustains among crude oil, gasoline, heating oil, coal, natural gas, uranium and ethanol futures prices. This implies that the US major energy source markets are not integrated as one primary energy market. Our tests also reveal that uranium and ethanol futures prices have very weak linkages with other major energy source prices. This indicates that the US energy market is still at a stage where none of the probable alternative energy source markets are playing the role as substitute or complement markets for the fossil fuel energy markets.
Resumo:
Organisational dependence upon IT continues to grow yet experiences of satisfaction vary widely. Problematic, aged IT is often cited as being a fundamental problem in this respect and this is commonly termed legacy information systems. However, in this paper the author offers an alternative, and arguably more comprehensive, theory of legacy information systems that accommodates multiple viewpoints and recognises its inherent dynamism. The paper suggests a theory of legacy information systems that comprises of the concepts of temporal effects, interpretations and characteristics. It is argued that legacy information systems are constructed of many ‘legacies’ that are handed down continuously, forming an amorphous set of sociotechnical interdependencies and relationships.
Resumo:
Abstract - Enterprise Resource Planning (ERP) software has become the dominant strategic platform for supporting enterprise-wide business processes. However, single vendor ERP software systems have been criticised for not meeting specific organisation and industry requirements. An alternative approach ‘Best of Breed (BoB)’, integrates components of software from multiple standard package vendors, and in some cases custom components. The objective is to develop enterprise systems that are more closely aligned with the requirements of an organisation. Although this approach may not be common at present it is likely to grow in importance due to business needs and technology advances such as the componentisation of ERP software. A case study analysis of a BoB implementation at a global entertainment's company is used as a platform for the discussion of the issues associated with this strategy and a comparison is made with the single vendor ERP alternative. The analysis centres on the complexity of implementation, the differences in the levels of functionality and business fit and the maintenance requirements.
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
Increasing evidence suggests that chromatin modifications have important roles in modulating constitutive or alternative splicing. Here we demonstrate that the PWWP domain of the chromatin-associated protein Psip1/Ledgf can specifically recognize tri-methylated H3K36 and that, like this histone modification, the Psip1 short (p52) isoform is enriched at active genes. We show that the p52, but not the long (p75), isoform of Psip1 co-localizes and interacts with Srsf1 and other proteins involved in mRNA processing. The level of H3K36me3 associated Srsf1 is reduced in Psip1 mutant cells and alternative splicing of specific genes is affected. Moreover, we show altered Srsf1 distribution around the alternatively spliced exons of these genes in Psip1 null cells. We propose that Psip1/p52, through its binding to both chromatin and splicing factors, might act to modulate splicing.
Resumo:
Considerable work has been undertaken to determine an economical process to provide sugarcane trash as a fuel for cogeneration. This paper reviews efforts to provide that trash fuel by harvesting, transporting and processing the trash with the cane. Harvesting trash with the cane has the advantage that cane that would otherwise be lost by extracting it with the trash is captured and sugar can be produced from that cane. Transporting trash with the cane significantly reduces the bulk density of the cane, requiring substantial changes and costs to cane transport. Shredding the trash at the harvester and compacting the cane in the bin prior to transport are possible methods to increase the bulk density but both have considerable cost. Processing trash through the sugar factory with the cane significantly reduces sugar recovery and sugar quality. Although considerable knowledge has been gained of these effects and further analysis has provided insights into their causes, much more work is required before whole crop harvesting and transport is an economically viable means of trash recovery.
Resumo:
The conventional approach to setting a milling unit is essentially based on the desire to achieve a particular bagasse moisture content or fibre fill in each nip of the mill. This approach relies on the selection of the speed at which the mill will operate for the selected fibre rate. There is rarely any checking that the selected speed or the selected fibre fill is achieved and the same set of assumptions is generally carried over to use again in the next year. The conventional approach largely ignores the fact that the selection of mill settings actually determines the speed at which the mill will operate. Making an adjustment with the intent of changing the performance of the mill often also changes the speed of the mill as an unintended consequence. This paper presents an alternative approach to mill setting. The approach discussed makes use of mill feeding theory to define the relationship between fibre rate, mill speed and mill settings and uses that theory to provide an alternative means of determining the settings in some nips of the mill. Mill feeding theory shows that, as the feed work opening reduces, roll speed increases. The theory also shows that there is an optimal underfeed opening and Donnelly chute exit opening that will minimise roll speed and that the current South African guidelines appear to be well away from those optimal values.
Resumo:
"…one should try to locate power at the extreme points of its exercise, where it is always less legal in character." (Foucault, 1980, p.97) Studies of schooling practices as techniques deriving from a particular art of governing that Foucault (2003b) called ‘governmentality’ have shown how psychopathologising discourses work to construct particular student-subjects and legitimise various practices of exclusion (Gram, 2007b). Here I extend this work to consider the use of alternative-site placement as an intensification in response to governmentality being put ‘at risk’. Governing ‘at a distance’ conjures an illusion of individual freedom which relies on the production of subjects who ‘choose’ to make choices that are consistent with the aspirations of government. In this chapter, it is argued that the designation of a child as ‘disorderly’ legitimises the intrusion of state into the private domain of the family via the Trojan horse of early intervention. This is enabled by the psy-sciences, whose technologies and aims amount to the moral retraining of ‘improper’ future-citizens who, in choosing to choose otherwise, threaten to make visible invisible relations of power. Alternative-site placement in special schools running intensive behaviour modification programs allows for a ‘redoubled insistence’ (Ewald, 1992) of these norms and limits that a ‘disorderly’ child threatens to transgress.
Resumo:
In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.
Resumo:
Numerically computed engine performance of a nominally two-dimensional radical farming scramjet with porous (permeable C/C ceramic) and porthole fuel injection is presented. Inflow conditions with Mach number, stagnation pressure, and enthalpy of 6.44, 40.2MPa, and 4.31 MJ/kg respectively, and fuel/air equivalence ratio of 0.44 were maintained, along with engine geometry. Hydrogen fuel was injected at an axial location of 92.33mm downstream of the leading edge for each investigated injection method. Results from this study show that porous fuel injection results in enhanced mixing and combustion compared to porthole fuel injection. This is particularly evident within the first half of the combustion chamber where porous fuel injection resulted in mixing and combustion efficiencies of 76% and 63% respectively. At the same location, porthole fuel injection resulted in efficiencies respectively of 58% and 46%. Key mechanisms contributing to the observed improved performance were the formation of an attached oblique fuel injection shock and associated stronger shock-expansion train ingested by the engine, enhanced spreading of the fuel in all directions and a more rapidly growing mixing layer.
Resumo:
Oxygen enriched, porous fuel injection has been numerically investigated in this study with the aim of understanding mixing and combustion enhancements achievable in a viable scramjet engine. Four injection configurations were studied: a fuel only case, a pre-mixed case and two staged injection cases where fuel and oxidiser were injected independently. All simulations were performed on a flight scale vehicle at Mach 8 flow conditions. Results show that the addition of oxygen with the fuel increases the mixing efficiency of the engine, however, is less sensitive to the method of oxygen addition: premixed versus staged. When the fuel-oxidiser-air mixture was allowed to combust, the method of additional oxygen delivery had a more significant impact. For pre-mixed fuel and oxidiser, the engine was found to choke, whereas in contrast, in the staged enrichment cases the engine failed to ignite. This result indicates that there exists an optimised configuration between pre-mixed and staged oxygen enrichment which results in a started, and combusting engine.