179 resultados para Wind waves
Resumo:
Profiled steel roof claddings in Australia and its neighbouring countries are commonly made of very thin high tensile steel and are crest-fixed intermittently with screw fasteners. The failure of the roof cladding systems was due to a local failure (dimpling of crests I pull-through) at the fasteners under wind uplift Cyclic wind uplift during cyclones causes fatigue cracking to occur at the fastener holes which leads to pull-through failures at lower load levels. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour and the design and test methods of these claddings under wind uplift loading during storms and cyclones, a detailed investigation consisting of finite element analyses, static and fatigue experiments and cyclonic wind modelling was carried out on two-span roofing assemblies of three common roofing profiles. This paper presents the details of this investigation and its important results.
Resumo:
The global efforts to reduce carbon emissions from power generation have favoured renewable energy resources such as wind and solar in recent years. The generation of power from the renewable energy resources has become attractive because of various incentives provided by government policies supporting green power. Among the various available renewable energy resources, the power generation from wind has seen tremendous growth in the last decade. This article discusses various advantages of the upcoming offshore wind technology and associated considerations related to their construction. The conventional configuration of the offshore wind farm is based on the alternative current internal links. With the recent advances of improved commercialised converters, voltage source converters based high voltage direct current link for offshore wind farms is gaining popularity. The planning and construction phases of offshore wind farms, including related environmental issues, are discussed here.
Resumo:
This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.
Resumo:
Adjustable speed induction generators, especially the Doubly-Fed Induction Generators (DFIG) are becoming increasingly popular due to its various advantages over fixed speed generator systems. A DFIG in a wind turbine has ability to generate maximum power with varying rotational speed, ability to control active and reactive by integration of electronic power converters such as the back-to-back converter, low rotor power rating resulting in low cost converter components, etc, DFIG have become very popular in large wind power conversion systems. This chapter presents an extensive literature survey over the past 25 years on the different aspects of DFIG. Application of H8 Controller for enhanced DFIG-WT performance in terms of robust stability and reference tracking to reduce mechanical stress and vibrations is also demonstrated in the chapter.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
Bearing faults are the most common cause of wind turbine failures. Unavailability and maintenance cost of wind turbines are becoming critically important, with their fast growing in electric networks. Early fault detection can reduce outage time and costs. This paper proposes Anomaly Detection (AD) machine learning algorithms for fault diagnosis of wind turbine bearings. The application of this method on a real data set was conducted and is presented in this paper. For validation and comparison purposes, a set of baseline results are produced using the popular one-class SVM methods to examine the ability of the proposed technique in detecting incipient faults.
Resumo:
Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique, localised bubbling zones on the water storage were found to produce over 50,000 mg m-2 d-1 and the areal extent ranged from 1.8 to 7% of the total reservoir area. The drivers behind these changes as well as lessons learnt from the system implementation are presented. This system exploits relatively cheap materials, sensing and computing and can be applied to a wide variety of aquatic and terrestrial systems.
Resumo:
For wind farm optimizations with lands belonging to different owners, the traditional penalty method is highly dependent on the type of wind farm land division. The application of the traditional method can be cumbersome if the divisions are complex. To overcome this disadvantage, a new method is proposed in this paper for the first time. Unlike the penalty method which requires the addition of penalizing term when evaluating the fitness function, it is achieved through repairing the infeasible solutions before fitness evaluation. To assess the effectiveness of the proposed method on the optimization of wind farm, the optimizing results of different methods are compared for three different types of wind farm division. Different wind scenarios are also incorporated during optimization which includes (i) constant wind speed and wind direction; (ii) various wind speed and wind direction, and; (iii) the more realisticWeibull distribution. Results show that the performance of the new method varies for different land plots in the tested cases. Nevertheless, it is found that optimum or at least close to optimum results can be obtained with sequential land plot study using the new method for all cases. It is concluded that satisfactory results can be achieved using the proposed method. In addition, it has the advantage of flexibility in managing the wind farm design, which not only frees users to define the penalty parameter but without limitations on the wind farm division.
Resumo:
Wind energy, being the fastest growing renewable energy source in the present world, requires a large number of wind turbines to transform wind energy into electricity. One factor driving the cost of this energy is the reliable operation of these turbines. Therefore, it is a growing requirement within the wind farm community, to monitor the operation of the wind turbines on a continuous basis so that a possible fault can be detected ahead of time. As the wind turbine operates in an environment of constantly changing wind speed, it is a challenging task to design a fault detection technique which can accommodate the stochastic operational behavior of the turbines. Addressing this issue, this paper proposes a novel fault detection criterion which is robust against operational uncertainty, as well as having the ability to quantify severity level specifically of the drivetrain abnormality within an operating wind turbine. A benchmark model of wind turbine has been utilized to simulate drivetrain fault condition and effectiveness of the proposed technique has been tested accordingly. From the simulation result it can be concluded that the proposed criterion exhibits consistent performance for drivetrain faults for varying wind speed and has linear relationship with the fault severity level.
Resumo:
Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.
Resumo:
Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.
Resumo:
Thin profiled steel roof sheeting and battens are increasingly used in the construction of roofing systems of residential, commercial, industrial and farm buildings in Australia. The critical load combination of external wind suction and internal wind pressures that occur during high wind events such as thunderstorms and tropical cylcones often dislocate the roofing systems partially or even completely due to premature roof connection failures. Past wind damage investigations have shown that roof sheeting failures occured at their screw connections to battens. In most of these cases, the screw fastener head pulled through the thin roof sheeting whilst the screw fasteners also pulled out from the battens. Research studis undertaken on the roof sheeting to batten connection failures have improved this situation. However, the batten to rafter or truss connections have not been investigated adequately. Failure of these connections can cause the failure of the entire roof structure as observed during the recent high wind events. Therefore a detailed experimental study consisting of both small scale and full scale tests has been undertaken to investigate the steel roof batten pull-through failures in relation to many critical parameters such as steel batten geometry, thickness and grade, screw fastener head sizes and screw tightening. This paper presents the details of this experimental study and the pull-through failure load results obtained from them. Finally it discusses the development of suitable design rules that can be used to determine the pull-through connection capacities of thin steel roof battens under wind uplift loads.
Resumo:
Extreme wind events such as tropical cyclones, tornadoes and storms are more likely to impact the Australian coastal regions due to possible climate changes. Such events can be extremely destructive to building structures, in particular, low-rise buildings with lightweight roofing systems that are commonly made of thin steel roofing sheets and battens. Large wind uplift loads that act on the roofs during high wind events often cause premature roof connection failures. Recent wind damage investigations have shown that roof failures have mostly occurred at the batten to rafter or truss screw connections. In most of these cases, the screw fastener heads pulled through the bottom flanges of thin steel roof battens. This roof connection failure is very critical as both roofing sheets and battens will be lost during the high wind events. Hence, a research study was conducted to investigate this critical pull-through failure using both experimental and numerical methods. This paper presents the details of numerical modeling and the results.