620 resultados para Web Mining


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – This paper aims to report findings from an exploratory study investigating the web interactions and technoliteracy of children in the early childhood years. Previous research has studied aspects of older children’s technoliteracy and web searching; however, few studies have analyzed web search data from children younger than six years of age. Design/methodology/approach – The study explored the Google web searching and technoliteracy of young children who are enrolled in a “preparatory classroom” or kindergarten (the year before young children begin compulsory schooling in Queensland, Australia). Young children were video- and audio-taped while conducting Google web searches in the classroom. The data were qualitatively analysed to understand the young children’s web search behaviour. Findings – The findings show that young children engage in complex web searches, including keyword searching and browsing, query formulation and reformulation, relevance judgments, successive searches, information multitasking and collaborative behaviours. The study results provide significant initial insights into young children’s web searching and technoliteracy. Practical implications – The use of web search engines by young children is an important research area with implications for educators and web technologies developers. Originality/value – This is the first study of young children’s interaction with a web search engine.