277 resultados para Wave resistance (Hydrodynamics)
Resumo:
We study a version of the Keller–Segel model for bacterial chemotaxis, for which exact travelling wave solutions are explicitly known in the zero attractant diffusion limit. Using geometric singular perturbation theory, we construct travelling wave solutions in the small diffusion case that converge to these exact solutions in the singular limit.
Resumo:
Cisplatin is one of the most potent anticancer agents, displaying significant clinical activity against a variety of solid tumours. To date, cisplatin-based combination treatment remains the most effective systemic chemotherapy for non-small cell lung cancer (NSCLC) patients. Unfortunately, the outcome of cisplatin therapy in NSCLC has reached a plateau due to the development of both intrinsic and acquired resistance that have become a major obstacle in the use of cisplatin in the clinical setting. The molecular mechanisms that underlie chemoresistance are largely unknown. Mechanisms of acquired resistance to cisplatin include reduced intracellular accumulation of the drug, enhanced drug inactivation by metallothionine and glutathione, increased repair activity of DNA damage, and altered expression of oncogenes and regulatory proteins. Cisplatin-induced cytotoxicity is mediated through the induction of apoptosis and cell cycle arrest as a result of cisplatin-DNA adduct formation, which in turn, activates multiple signaling pathways and mediators. These include p53, Bcl-2 family, caspases, cyclins, CDKs, MAPK and PI3K/Akt. Increased expression of anti-apoptotic genes and mutations in the intrinsic apoptotic pathway may also contribute to the inability of cells to detect DNA damage or to induce apoptosis. This chapter will provide an insight into the mechanisms involved in cisplatin resistance and a better understanding of the molecular basis of the cellular response to cisplatin-based chemotherapy in lung cancer.
Resumo:
Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.
Resumo:
The article discusses the issues of resistance; that is resistance by prisoners to the various manifestations of power operating in high security prisons, as well as that of attempted shifts in the regime from physical to psychological control. Other topics highlighted include legitimacy and 'official discourse', mourning and the construction of 'ungrievable lives' and the importance of finding a way out of the cycle of violence, which high security regimes perpetuate.
Resumo:
This chapter focuses on ‘intergenerational collaborative drawing’, a particular process of drawing whereby adults and children draw at the same time on a blank paper space. Such drawings can be produced for a range of purposes, and based on different curriculum or stimulus subjects. Children of all ages, and with a range of physical and intellectual abilities are able to draw with parents, carers and teachers. Intergenerational collaborative drawing is a highly potent method for drawing in early childhood contexts because it brings adults and children together in the process of thinking and theorizing in order to create visual imagery and this exposes in deep ways to adults and children, the ideas and concepts being learned about. For adults, this exposure to a child’s thinking is a far more effective assessment tool than when they are presented with a finished drawing they know little about. This chapter focuses on drawings to examine wider issues of learning independence and how in drawing, preferred schema in the form of hand-out worksheets, the suggestive drawings provided by adults, and visual material seen in everyday life all serve to co-opt a young child into making particular schematic choices. I suggest that intergenerational collaborative drawing therefore serves to work as a small act of resistance to that co-opting, in that it helps adults and children to collectively challenge popular creativity and learning discourses.
Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns
Resumo:
The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-dimensional ship wave patterns, such as the shape of steep waves close to their limiting configuration, in a manner that has been possible in the two-dimensional analogue for some time.
Resumo:
We examine the security of the 64-bit lightweight block cipher PRESENT-80 against related-key differential attacks. With a computer search we are able to prove that for any related-key differential characteristic on full-round PRESENT-80, the probability of the characteristic only in the 64-bit state is not higher than 2−64. To overcome the exponential (in the state and key sizes) computational complexity of the search we use truncated differences, however as the key schedule is not nibble oriented, we switch to actual differences and apply early abort techniques to prune the tree-based search. With a new method called extended split approach we are able to make the whole search feasible and we implement and run it in real time. Our approach targets the PRESENT-80 cipher however,with small modifications can be reused for other lightweight ciphers as well.
Resumo:
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Resumo:
Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing Light gauge Steel Frame (LSF) wall systems made of 1.15 mm G500 steel studs and varying plasterboard and insulation configurations (cavity and external insulation) using full scale fire tests. Suitable finite element models of LSF walls were then developed and validated by comparing with test results. In this study, the validated finite element models of LSF wall panels subject to standard fire conditions were used in a detailed parametric study to investigate the effects of important parameters such as steel grade and thickness, plasterboard screw spacing, plasterboard lateral restraint, insulation materials and load ratio on their performance under standard fire conditions. Suitable equations were proposed to predict the time–temperature profiles of LSF wall studs with eight different plasterboard-insulation configurations, and used in the finite element analyses. Finite element parametric studies produced extensive fire performance data for the LSF wall panels in the form of load ratio versus time and critical hot flange (failure) temperature curves for eight wall configurations. This data demonstrated the superior fire performance of externally insulated LSF wall panels made of different steel grades and thicknesses. It also led to the development of a set of equations to predict the important relationship between the load ratio and the critical hot flange temperature of LSF wall studs. Finally this paper proposes a simplified method to predict the fire resistance rating of LSF walls based on the two proposed set of equations for the load ratio–hot flange temperature and the time–temperature relationships.
Resumo:
Time-domain models of marine structures based on frequency domain data are usually built upon the Cummins equation. This type of model is a vector integro-differential equation which involves convolution terms. These convolution terms are not convenient for analysis and design of motion control systems. In addition, these models are not efficient with respect to simulation time, and ease of implementation in standard simulation packages. For these reasons, different methods have been proposed in the literature as approximate alternative representations of the convolutions. Because the convolution is a linear operation, different approaches can be followed to obtain an approximately equivalent linear system in the form of either transfer function or state-space models. This process involves the use of system identification, and several options are available depending on how the identification problem is posed. This raises the question whether one method is better than the others. This paper therefore has three objectives. The first objective is to revisit some of the methods for replacing the convolutions, which have been reported in different areas of analysis of marine systems: hydrodynamics, wave energy conversion, and motion control systems. The second objective is to compare the different methods in terms of complexity and performance. For this purpose, a model for the response in the vertical plane of a modern containership is considered. The third objective is to describe the implementation of the resulting model in the standard simulation environment Matlab/Simulink.
Resumo:
OBJECTIVE To assess the concurrent validity of fasting indexes of insulin sensitivity and secretion in - obese prepubertal (Tanner stage 1) children and pubertal (Tanner stages 2-5) glucose tolerance test (FSIVGTT) as a criterion measure. RESEARCH DESIGN AND METHODS Eighteen obese children and adolescents (11 girls and 7 boys, mean age 12.2 +/- 2.4 years, mean BMI 35.4 +/- 6.2 kg/m(2), mean BMI-SDS 3.5 +/- 0.5, 7 prepubertal and I I pubertal) participated in the study. All participants underwent an insulin-modified FSIVGTT on two occasions, and 15 repeated this test a third time (mean 12.9 and 12.0 weeks apart). S-i measured by the FSIVGTT was compared with homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR), quantitative insulin-sensitivity check index (QUICKI), fasting glucose-to-insulin ratio (FGIR), and fasting insulin (estimates of insulin sensitivity derived from fasting samples). The acute insulin response (AIR) measured by the FSIVGTT was compared with HOMA of percent beta-cell function (HOMA-beta%), FGIR, and fasting insulin (estimates of insulin secretion derived from fasting samples). RESULTS There was a significant negative correlation between HOMA-IR and S-i (r = -0.89, r = -0.90, and r = -0.81, P < 0.01) and a significant positive correlation between QUICKI and S-i (r = 0.89, r = 0.90, and r = 0.81, P < 0.01) at each time point. There was a significant positive correlation between FGIR and S-i (r = 0.91, r = 0.91, and r = 0.82, P < 0.01) and a significant negative correlation between fasting insulin and S-i (r = -90, r = -0.90, and r = -0.88, P < 0.01). HOMA-beta% was not as strongly correlated with AIR (r = 0.60, r = 0.54, and r = 0.61, P < 0.05). CONCLUSIONS HOMA-IR, QUICKI, FGIR, and fasting insulin correlate strongly with S-i assessed by the FSIVGTT in obese children and adolescents. Correlations between HOMA-β% FGIR and fasting insulin, and AIR were not as strong. Indexes derived from fasting samples are a valid tool for assessing insulin sensitivity in prepubertal and pubertal obese children.
Resumo:
The concept of dispositional resistance to change has been introduced in a series of exploratory and confirmatory analyses through which the validity of the Resistance to Change (RTC) Scale has been established (S. Oreg, 2003). However, the vast majority of participants with whom the scale was validated were from the United States. The purpose of the present work was to examine the meaningfulness of the construct and the validity of the scale across nations. Measurement equivalence analyses of data from 17 countries, representing 13 languages and 4 continents, confirmed the cross-national validity of the scale. Equivalent patterns of relationships between personal values and RTC across samples extend the nomological net of the construct and provide further evidence that dispositional resistance to change holds equivalent meanings across nations.
Resumo:
While overall obesity rates are rising, a minority of individuals appear to resist overconsumption and remain lean in spite of an ‘obesogenic’ environment. Studying the factors hypothesised to underpin behaviours associated with resistance to overconsumption may inform weight management strategies in an adverse environment. Trait (BIS-11) and behavioural (response inhibition, GoStop) self control were assessed in the laboratory. Snack food consumption was measured covertly via a sham taste test. Lack of motor control was positively correlated (r = .32, p <. 05) and successful response inhibition was negatively correlated (r = −.35, p <. 05) with snack food intake. Low motor control was also associated with further food intake when satiated (r = .39, p < .01). These relationships were independent of self-reported palatability and perceived reward value of the food. Motor control may be an important factor implicated in ‘mindless’ eating in an environment abundant in palatable, energy-dense snack foods.
Resumo:
Critical phenotypic changes that occur during the progression of breast cancer include the loss of hormone-dependence, acquired resistance to systemic therapies, and increased metastatic potential. We have isolated a series of MCF-7 human breast cancer variants which exhibit hormone-independent growth, antiestrogen resistance, and increased metastatic potential. Analysis of the phenotypes of these variants strongly suggests that changes in the expression of specific genes may be critical to the generation of phenotypic diversity in the process of malignant progression in breast cancer. Epigenetic changes may contribute significantly to the generation of these phenotypic changes observed during breast cancer progression. Many of the characteristics of the progressed phenotypes appear to have arisen in response to appropriate selective pressures (growth in ovariectomized nude mice; growth in the presence of antiestrogens). These observations are consistent with the concept of clonal selection and expansion in the process of malignant progression.