219 resultados para Washing machines
Resumo:
The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generalization of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics. Also, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement. The comparison results show that the computation using our mapper/reducer placement is much cheaper while still satisfying the computation deadline.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NPcomplete. Thus, in this paper we propose a new grouping genetic algorithm for the mappers/reducers placement problem in cloud computing. Compared with the original one, our grouping genetic algorithm uses an innovative coding scheme and also eliminates the inversion operator which is an essential operator in the original grouping genetic algorithm. The new grouping genetic algorithm is evaluated by experiments and the experimental results show that it is much more efficient than four popular algorithms for the problem, including the original grouping genetic algorithm.
Resumo:
The Design Minds Refresh Toolkit was one of six K7-12 secondary school design toolkits commissioned by the State Library of Queensland (SLQ) Asia Pacific Design Library (APDL), to facilitate the delivery of the Stage 1 launch of its Design Minds online platform (www.designminds.org.au) partnership initiative with Queensland Government Arts Queensland and the Smithsonian Cooper-Hewitt National Design Museum, on June 29, 2012. Design Minds toolkits are practical guides, underpinned by a combination of one to three of the Design Minds model phases of ‘Inquire’, ‘Ideate’ and ‘Implement’ (supported by at each stage with structured reflection), to enhance existing school curriculum and empower students with real life design exercises, within the classroom environment. Toolkits directly identify links to Naplan, National Curriculum, C2C and Professional Standards benchmarks, as well as the student capabilities of successful and creative 21st century citizens they seek to engender through design thinking. Inspired by ideas from a design project for second year Interior Design students at QUT School of Design, this toolkit explores, through five distinct exercises, different design tools and ways to approach the future design of environments (bathrooms) to facilitate the daily washing ritual, while addressing diverse and changing social, cultural, technological and environmental challenges. The Design Minds Refresh Toolkit particularly aims to promote ‘Lateral Thinking’ attitudes and empathy as an approach to create unusual and sustainable solutions to future problems that may affect our daily behavioural routines, and the spaces that facilitate them. More generally, it aims to facilitate awareness in young people, of the role of design in society and the value of design thinking skills in generating strategies to solve basic to complex systemic challenges, as well as to inspire post-secondary pathways and idea generation for education. The toolkit encourages students and teachers to develop sketching, making, communication, presentation and collaboration skills to improve their design process, as well as explore further inquiry (background research) to enhance the ideation exercises. Exercise 1 focuses on the ‘Inquire’ and ‘Ideate’ phases, Exercise 2 and 3 build on ideation skills, and Exercise 4 and 5 concentrate on the ‘Implement’ phase. Depending on the intensity of the focus, the unit of work could be developed over a 4-5 week program (approximately 10-12 x 60 minute lessons/workshops) or as smaller workshops treated as discrete learning experiences. The toolkit is available for public download from http://designminds.org.au/refresh/ on the Design Minds website. Exercise 2 (Other People’s Shoes) and Exercise 3 (The Future Bathroom) of the toolkit were used as content for the inaugural Design Minds Professional Development Workshop on June 28, 2012 to pre-launch the website to Queensland teachers.
Resumo:
A mechanochemical synthesis process has been used to synthesise aluminium nanoparticles. The aluminium is synthesised via a solid state chemical reaction which is initiated inside a ball mill at room temperature between either lithium (Li) or sodium (Na) metal which act as reducing agents with unreduced aluminium chloride (AlCl3). The reaction product formed consists of aluminium nanoparticles embedded within a by-product salt phase (LiCl or NaCl, respectively). The LiCl is washed with a suitable solvent resulting in aluminium (Al) nanoparticles which are not oxidised and are separated from the byproduct phase. Synthesis and washing was confirmed using X-ray diffraction (XRD). Nanoparticles were found to be ∼25–100nm from transmission electron microscopy (TEM) and an average size of 55nm was determined fromsmall angle X-ray scattering (SAXS) measurements. As synthesised Al/NaCl composites, washed Al nanoparticles, and purchased Al nanoparticles were deuterium (D2) absorption tested up to 2 kbar at a variety of temperatures, with no absorption detected within system resolution.
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
This study presents an acoustic emission (AE) based fault diagnosis for low speed bearing using multi-class relevance vector machine (RVM). A low speed test rig was developed to simulate the various defects with shaft speeds as low as 10 rpm under several loading conditions. The data was acquired using anAEsensor with the test bearing operating at a constant loading (5 kN) andwith a speed range from20 to 80 rpm. This study is aimed at finding a reliable method/tool for low speed machines fault diagnosis based on AE signal. In the present study, component analysis was performed to extract the bearing feature and to reduce the dimensionality of original data feature. The result shows that multi-class RVM offers a promising approach for fault diagnosis of low speed machines.
Resumo:
Rolling Element Bearings (REBs) are vital components in rotating machineries for providing rotating motion. In slow speed rotating machines, bearings are normally subjected to heavy static loads and a catastrophic failure can cause enormous disruption to production and human safety. Due to its low operating speed the impact energy generated by the rotating elements on the defective components is not sufficient to produce a detectable vibration response. This is further aggravated by the inability of general measuring instruments to detect and process the weak signals at the initiation of the defect accurately. Furthermore, the weak signals are often corrupted by background noise. This is a serious problem faced by maintenance engineers today and the inability to detect an incipient failure of the machine can significantly increases the risk of functional failure and costly downtime. This paper presents the application of noise removal techniques for enhancing the detection capability for slow speed REB condition monitoring. Blind deconvolution (BD) and adaptive line enhancer (ALE) are compared to evaluate their performance in enhancing the source signal with consequential removal of background noise. In the experimental study, incipient defects were seeded on a number of roller bearings and the signals were acquired using acoustic emission (AE) sensor. Kurtosis and modified peak ratio (mPR) were used to determine the detectability of signal corrupted by noise.
Resumo:
This paper presents a novel control strategy for velocity tracking of Permanent Magnet Synchronous Machines (PMSM). The model of the machine is considered within the port-Hamiltonian framework and a control is designed using concepts of immersion and invariance (I&I) recently developed in the literature. The proposed controller ensures internal stability and output regulation, and it forces integral action on non-passive outputs.
Resumo:
Health care systems are highly dynamic not just due to developments and innovations in diagnosis and treatments, but also by virtue of emerging management techniques supported by modern information and communication technology. A multitude of stakeholders such as patients, nurses, general practitioners or social carers can be integrated by modeling complex interactions necessary for managing the provision and consumption of health care services. Furthermore, it is the availability of Service-oriented Architecture (SOA) that supports those integration efforts by enabling the flexible and reusable composition of autonomous, loosely-coupled and web-enabled software components. However, there is still the gap between SOA and predominantly business-oriented perspectives (e.g. business process models). The alignment of both views is crucial not just for the guided development of SOA but also for the sustainable evolution of holistic enterprise architectures. In this paper, we combine the Semantic Object Model (SOM) and the Business Process Modelling Notation (BPMN) towards a model-driven approach to service engineering. By addressing a business system in Home Telecare and deriving a business process model, which can eventually be controlled and executed by machines; in particular by composed web services, the full potential of a process-centric SOA is exploited.
Resumo:
There is currently some debate about whether the energy expenditure of domestic tasks is sufficient to confer health benefits. The aim of this study was therefore to measure the energy cost of five activities commonly undertaken by mothers of young children. Seven women with at least one child younger than five years of age spent 15 minutes in each of the following activities: sitting quietly, vacuum cleaning, washing windows, walking at moderate pace (approx 5km/hour), walking with a stroller and grocery shopping in a super-market. Each of the six 'trials' was completed on the same day, in random order. A carefully calibrated portable gas analyser was used to measure oxygen uptake during each activity, and data were converted to units of energy expenditure (METS). Vacuum cleaning, washing windows and walking with and without a stroller were found to be 'moderate intensity activities' (3 to 6 METs), but supermarket shopping did not reach this criterion. The MET values for these activities were similar to those reported in the Compendium of Physical Activities (Ainsworth et al., 2000). However, the energy expenditures of walking, both with and without a stroller, were higher than those reported in the Compendium. The findings suggest that some of the tasks associated with domestic caring duties are conducted at an intensity which is sufficient to confer some health benefit. Such benefits will only accrue however if the daily duration of these activities is sufficient to meet current guidelines.
Resumo:
This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.
Resumo:
Macrophonics II presents new Australian work emerging from the leading edge of performance interface research. The program addresses the emerging dialogue between traditional media and emerging digital media, as well as dialogues across a broad range of musical traditions. Recent technological developments are causing a complete reevaluation of the relationships between media and genres in art, and Macrophonics II presents a cross-section of responses to this situation. Works in the program foreground an approach to performance that integrates sensors with novel performance control devices, and/or examine how machines can be made musical in performance. The program presents works by Australian artists Donna Hewitt, Julian Knowles and Wade Marynowsky, with choreography by Avril Huddy and dance performance by Lizzie and Zaimon Vilmanis. From sensor-based microphones and guitars, through performance a/v, to post-rock dronescapes, movement inspired works and experimental electronica, Macrophonics II provides a broad and engaging survey of new performance approaches in mediatised environments. Initial R&D for the work was supported by a range of institutions internationally, including the Australia Council for the Arts, Arts Queensland, STEIM (Holland) and the Nes Artist Residency (Iceland).
Resumo:
To harness safe operation of Web-based systems in Web environments, we propose an SSPA (Server-based SHA-1 Page-digest Algorithm) to verify the integrity of Web contents before the server issues an HTTP response to a user request. In addition to standard security measures, our Java implementation of the SSPA, which is called the Dynamic Security Surveillance Agent (DSSA), provides further security in terms of content integrity to Web-based systems. Its function is to prevent the display of Web contents that have been altered through the malicious acts of attackers and intruders on client machines. This is to protect the reputation of organisations from cyber-attacks and to ensure the safe operation of Web systems by dynamically monitoring the integrity of a Web site's content on demand. We discuss our findings in terms of the applicability and practicality of the proposed system. We also discuss its time metrics, specifically in relation to its computational overhead at the Web server, as well as the overall latency from the clients' point of view, using different Internet access methods. The SSPA, our DSSA implementation, some experimental results and related work are all discussed
Resumo:
This paper presents a novel place recognition algorithm inspired by the recent discovery of overlapping and multi-scale spatial maps in the rodent brain. We mimic this hierarchical framework by training arrays of Support Vector Machines to recognize places at multiple spatial scales. Place match hypotheses are then cross-validated across all spatial scales, a process which combines the spatial specificity of the finest spatial map with the consensus provided by broader mapping scales. Experiments on three real-world datasets including a large robotics benchmark demonstrate that mapping over multiple scales uniformly improves place recognition performance over a single scale approach without sacrificing localization accuracy. We present analysis that illustrates how matching over multiple scales leads to better place recognition performance and discuss several promising areas for future investigation.
Resumo:
Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.