204 resultados para Variância residual
Resumo:
Objective To evaluate methods for monitoring monthly aggregated hospital adverse event data that display clustering, non-linear trends and possible autocorrelation. Design Retrospective audit. Setting The Northern Hospital, Melbourne, Australia. Participants 171,059 patients admitted between January 2001 and December 2006. Measurements The analysis is illustrated with 72 months of patient fall injury data using a modified Shewhart U control chart, and charts derived from a quasi-Poisson generalised linear model (GLM) and a generalised additive mixed model (GAMM) that included an approximate upper control limit. Results The data were overdispersed and displayed a downward trend and possible autocorrelation. The downward trend was followed by a predictable period after December 2003. The GLM-estimated incidence rate ratio was 0.98 (95% CI 0.98 to 0.99) per month. The GAMM-fitted count fell from 12.67 (95% CI 10.05 to 15.97) in January 2001 to 5.23 (95% CI 3.82 to 7.15) in December 2006 (p<0.001). The corresponding values for the GLM were 11.9 and 3.94. Residual plots suggested that the GLM underestimated the rate at the beginning and end of the series and overestimated it in the middle. The data suggested a more rapid rate fall before 2004 and a steady state thereafter, a pattern reflected in the GAMM chart. The approximate upper two-sigma equivalent control limit in the GLM and GAMM charts identified 2 months that showed possible special-cause variation. Conclusion Charts based on GAMM analysis are a suitable alternative to Shewhart U control charts with these data.
Resumo:
Ecological studies are based on characteristics of groups of individuals, which are common in various disciplines including epidemiology. It is of great interest for epidemiologists to study the geographical variation of a disease by accounting for the positive spatial dependence between neighbouring areas. However, the choice of scale of the spatial correlation requires much attention. In view of a lack of studies in this area, this study aims to investigate the impact of differing definitions of geographical scales using a multilevel model. We propose a new approach -- the grid-based partitions and compare it with the popular census region approach. Unexplained geographical variation is accounted for via area-specific unstructured random effects and spatially structured random effects specified as an intrinsic conditional autoregressive process. Using grid-based modelling of random effects in contrast to the census region approach, we illustrate conditions where improvements are observed in the estimation of the linear predictor, random effects, parameters, and the identification of the distribution of residual risk and the aggregate risk in a study region. The study has found that grid-based modelling is a valuable approach for spatially sparse data while the SLA-based and grid-based approaches perform equally well for spatially dense data.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.
Resumo:
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load-bearing and non-load bearing structural elements. These buildings must be properly evaluated after a fire event to assess the nature and extent of structural damage. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the structural capacity of cold-formed steel members in these buildings has been affected. Elevated temperatures during a fire event affect the structural performance of cold-formed steel members even after cooling down to ambient temperature due to the possible detrimental changes in their mechanical properties. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past and hence there is a need to investigate the post-fire mechanical properties of cold-formed steels. Therefore an experimental study was undertaken at the Queensland University of Technology to understand the residual mechanical properties of cold-formed steels after fire events. Tensile coupon tests were conducted on three different steel grades and thicknesses to obtain their stress-strain curves and relevant mechanical properties after cooling them down from different elevated temperatures. It was found that the post-fire mechanical properties of cold-formed steels are different to the original ambient temperature mechanical properties. Hence a new set of equations is proposed to predict the reduced mechanical properties of cold-formed steels after a fire event.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings will be exposed to elevated temperatures. Hence after such events there is a need to evaluate the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This means conservative decisions are often made in relation to fire exposed building structures. This research is aimed at investigating the buckling capacities of fire exposed cold-formed lipped channel steel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperatures before they were tested to failure. Similarly tensile coupon tests were also undertaken after being exposed to various elevated temperatures, from which the residual mechanical properties (yield stress and Young’s modulus) of the steels used in this study were derived. Using these mechanical properties, the residual compression capacities of tested short columns were predicted using the currently used design rules in AS/NZS 4600 and AISI cold-formed steel standards. This comparison showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of fire exposed buildings. This paper presents the details of this experimental study and the results.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings can be exposed to elevated temperatures. Hence after such events there is a need to evaluate their residual strengths. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This research is aimed at investigating the distortional buckling capacities of fire exposed cold-formed lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC, and then tested to failure after cooling down. Suitable finite element models were developed with post-fire mechanical properties to simulate the behaviour of tested columns and were validated using test results. The residual compression capacities of short columns were also predicted using the current cold-formed steel standards and compared with test and finite element analysis results. This comparison showed that ambient temperature design rules for columns can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the column can be estimated after a fire event. Such residual capacity assessments will allow engineers to evaluate the safety of fire exposed buildings. This paper presents the details of this experimental study, finite element analyses and the results.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel beam (LSB) subject to web crippling under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. The LSB sections with two rectangular hollow flanges are made using a simultaneous cold-forming and electric resistance welding process. Due to the geometry of the LSB, and its unique residual stress characteristics and initial geometric imperfections, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending, predominant shear and combined actions. To date, however, no investigation has been conducted on the web crippling behaviour and strength of LSB sections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs. Twenty-eight web crippling tests were conducted under ETF and ITF load cases, and the ultimate web crippling capacities were compared with the predictions from the design equations in AS/NZS 4600 and AISI S100. This comparison showed that AS/NZS 4600 and AISI S100 web crippling design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs based on experimental results. Suitable design rules were also developed under the direct strength method (DSM) format.
Resumo:
Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant. The primary aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the developments in Australia. The secondary aim is to provide an overview of the possible critical changes that may occurred in the world of prosthetic following these developments in bone-anchored prostheses.
Resumo:
Two Archaean komatiitic flows, Fred’s Flow in Canada and the Murphy Well Flow in Australia, have similar thicknesses (120 and 160 m) but very different compositions and internal structures. Their contrasting differentiation profiles are keys to determine the cooling and crystallization mechanisms that operated during the eruption of Archaean ultramafic lavas. Fred’s Flow is the type example of a thick komatiitic basalt flow. It is strongly differentiated and consists of a succession of layers with contrasting textures and compositions. The layering is readily explained by the accumulation of olivine and pyroxene in a lower cumulate layer and by evolution of the liquid composition during downward growth of spinifex-textured rocks within the upper crust. The magmas that erupted to form Fred’s Flow had variable compositions, ranging from 12 to 20 wt% MgO, and phenocryst contents from 0 to 20 vol%. The flow was emplaced by two pulses. A first ~20-m-thick pulse was followed by another more voluminous but less magnesian pulse that inflated the flow to its present 120 m thickness. Following the second pulse, the flow crystallized in a closed system and differentiated into cumulates containing 30–38 wt% MgO and a residual gabbroic layer with only 6 wt% MgO. The Murphy Well Flow, in contrast, has a remarkably uniform composition throughout. It comprises a 20-m-thick upper layer of fine-grained dendritic olivine and 2–5 vol% amygdales, a 110–120 m intermediate layer of olivine porphyry and a 20–30 m basal layer of olivine orthocumulate. Throughout the flow, MgO contents vary little, from only 30 to 33 wt%, except for the slightly more magnesian basal layer (38–40 wt%). The uniform composition of the flow and dendritic olivine habits in the upper 20 m point to rapid cooling of a highly magnesian liquid with a composition like that of the bulk of the flow. Under equilibrium conditions, this liquid should have crystallized olivine with the composition Fo94.9, but the most magnesian composition measured by electron microprobe in samples from the flow is Fo92.9. To explain these features, we propose that the parental liquid contained around 32 wt% MgO and 3 wt% H2O. This liquid degassed during the eruption, creating a supercooled liquid that solidified quickly and crystallized olivine with non-equilibrium textures and compositions.
Resumo:
Bone-anchored prostheses, relying on implants to attach the prosthesis directly to the residual skeleton, are the ultimate resort for patients with transfemoral amputations (TFA) experiencing severe socket discomfort. The first patient receiving a bone-anchored prosthesis underwent the surgery in 1990 in the Sahlgrenska University Hospital (Sweden). To date, there are two commercially available implants: OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany). The key to success to this technique is a firm bone-implant bonding, depending on increasing mechanical stress applied daily during load bearing exercises (LBE). The loading data could be analysed through different biomechanical variables. The intra-tester reliability of these exercises will be presented here. Moreover the effect of increase of loading, axes of application of the load and body weight as well as the difference between force and moment variables will be discussed.
Resumo:
Evolutionary algorithms are playing an increasingly important role as search methods in cognitive science domains. In this study, methodological issues in the use of evolutionary algorithms were investigated via simulations in which procedures were systematically varied to modify the selection pressures on populations of evolving agents. Traditional roulette wheel, tournament, and variations of these selection algorithms were compared on the “needle-in-a-haystack” problem developed by Hinton and Nowlan in their 1987 study of the Baldwin effect. The task is an important one for cognitive science, as it demonstrates the power of learning as a local search technique in smoothing a fitness landscape that lacks gradient information. One aspect that has continued to foster interest in the problem is the observation of residual learning ability in simulated populations even after long periods of time. Effective evolutionary algorithms balance their search effort between broad exploration of the search space and in-depth exploitation of promising solutions already found. Issues discussed include the differential effects of rank and proportional selection, the tradeoff between migration of populations towards good solutions and maintenance of diversity, and the development of measures that illustrate how each selection algorithm affects the search process over generations. We show that both roulette wheel and tournament algorithms can be modified to appropriately balance search between exploration and exploitation, and effectively eliminate residual learning in this problem.
Resumo:
A multi-season 15N tracer recovery experiment was conducted on an Oxisol cropped with wheat, maize and sorghum to compare crop N recoveries of different fertilisation strategies and determine the main pathways of N losses that limit N recovery in these agroecosystems. In the wheat and maize seasons, 15N-labelled fertiliser was applied as conventional urea (CONV) and urea coated with a nitrification inhibitor (DMPP). In sorghum, the fate of 15N-labelled urea was monitored in this crop following a legume ley pasture (L70) or a grass ley pasture (G100). The fertiliser N applied to sorghum in the legume-cereal rotation was reduced (70 kg N ha−1) compared to the grass-cereal (100 kg N ha−1) to assess the availability of the N residual from the legume ley pasture. Average crop N recoveries were 73 % (CONV) and 77 % (DMPP) in wheat and 50 % (CONV) and 51 % (DMPP) in maize, while in sorghum were 71 % (L70) and 53 % (G100). Data gathered in this study indicate that the intrinsic physical and chemical conditions of Oxisols can be extremely effective in limiting N losses via deep leaching or denitrification. Elevated crop 15N recoveries can be therefore obtained in subtropical Oxisols using conventional urea while in these agroecosystems DMPP urea has no significant scope to increase fertiliser N recovery in the crop. Overall, introducing a legume phase to limit the fertiliser N requirements of the following cereal crop proved to be the most effective strategy to reduce N losses and increase fertiliser N recovery.
Resumo:
A comprehensive revision of the Global Burden of Disease (GBD) study is expected to be completed in 2012. This study utilizes a broad range of improved methods for assessing burden, including closer attention to empirically derived estimates of disability. The aim of this paper is to describe how GBD health states were derived for schizophrenia and bipolar disorder. These will be used in deriving health state-specific disability estimates. A literature review was first conducted to settle on a parsimonious set of health states for schizophrenia and bipolar disorder. A second review was conducted to investigate the proportion of schizophrenia and bipolar disorder cases experiencing these health states. These were pooled using a quality-effects model to estimate the overall proportion of cases in each state. The two schizophrenia health states were acute (predominantly positive symptoms) and residual (predominantly negative symptoms). The three bipolar disorder health states were depressive, manic, and residual. Based on estimates from six studies, 63% (38%-82%) of schizophrenia cases were in an acute state and 37% (18%-62%) were in a residual state. Another six studies were identified from which 23% (10%-39%) of bipolar disorder cases were in a manic state, 27% (11%-47%) were in a depressive state, and 50% (30%-70%) were in a residual state. This literature review revealed salient gaps in the literature that need to be addressed in future research. The pooled estimates are indicative only and more data are required to generate more definitive estimates. That said, rather than deriving burden estimates that fail to capture the changes in disability within schizophrenia and bipolar disorder, the derived proportions and their wide uncertainty intervals will be used in deriving disability estimates.