243 resultados para Underwater acoustics
Resumo:
Characteristics of modal sound radiation of finite cylindrical shells are studied using finite element and boundary element methods in this paper. In the low frequency range, modal radiation efficiencies of finite cylindrical shells are found to asymptotically approach those of the corresponding infinite cylindrical shell when structural trace wavelengths of the cylindrical shells are greater than the acoustic wavelength. Modal radiation efficiencies for each group of modes having the same circumferential modal index decrease as the axial modal index increases. They converge to each other when the axial trace wavelength is much greater than the circumferential trace wavelength. The mechanism leading to lower radiation efficiency of modes with higher circumferential modal index of short cylinders is explained. Similar to those of flat plate panels, change in slope or waviness is observed in modal radiation efficiency curves of modes with higher order axial modal index at medium frequencies. This is attributed to the interference of sound radiated by neighbouring vibrating cells when the distance between nodal lines of a vibrating mode is in the same order or smaller than the acoustic wavelength. Effects of the internal sound field on modal radiation efficiencies of a finite open-end cylinder are discussed.
Resumo:
This presentation relates to a paper presenting an explanation of why the reuse of building components after demolition or deconstruction is critical to the future of the construction industry. An examination of the historical cause and response to climate change sets the scene as to why governance is becoming increasingly focused on the built environment as a mechanism to controlling waste generation associated with the process of demolition, construction and operation. Through an annotated description to the evolving design and construction methodology of a range of timber dwellings (typically 'Queenslanders' during the eras of 1880-1900, 1900-1920 & 1920-1940) the paper offers an evaluation to the variety of materials, which can be used advantageously by those wishing to 'regenerate' a Queenslander. This analysis of 'regeneration' details the constraints when considering relocation and/ or reuse by adaption including deconstruction of building components against the legislative framework requirements of the Queensland Building Act 1975 and the Queensland Sustainable Planning Act 2009, with a specific examination to those of the Building Codes of Australia. The paper concludes with a discussion of these constraints, their impacts on 'regeneration' and the need for further research to seek greater understanding of the practicalities and drivers of relocation, adaptive and building components suitability for reuse after deconstruction.
Resumo:
The design for the Gladstone Sustainable Home was an invited commission which contributed to the Queenland Governments Smart and Sustainable Homes Program, a legacy borne out of the 2004 Year of the Built Environment. The Sustainable Homes Program involved the partnering of the Queensland Government and Design/Building industry to promote and engage with sustainable housing. The Gladstone Sustainable Home incorporated 3 principles of sustainability - social, economic and environmental, and is listed within the Government Sustainable Homes website.
Resumo:
Introduction Buildings, which account for approximately half of all annual energy and greenhouse gas emissions, are an important target area for any strategy addressing climate change. Whilst new commercial buildings increasingly address sustainability considerations, incorporating green technology in the refurbishment process of older buildings is technically, financially and socially challenging. This research explores the expectations and experiences of commercial office building tenants, whose building was under-going green refurbishment. Methodology Semi-structured in-depth interviews with seven residents and neighbours of a large case-study building under-going green refurbishment in Melbourne, Australia. Built in 1979, the 7,008m² ‘B’ grade building consists of 11 upper levels of office accommodation, ground floor retail, and a basement area leased as a licensed restaurant. After refurbishment, which included the installation of chilled water pumps, solar water heating, waterless urinals, insulation, disabled toilets, and automatic dimming lights, it was expected that the environmental performance of the building would move from a non-existent zero ABGR (Australian Building Greenhouse Rating) star rating to 3.5 stars, with a 40% reduction in water consumption and 20% reduction in energy consumption. Interviews were transcribed, with responses analysed using a thematic approach, identifying categories, themes and patterns. Results Commercial property tenants are on a journey to sustainability - they are interested and willing to engage in discussions about sustainability initiatives, but the process, costs and benefits need to be clear. Critically, whilst sustainability was an essential and non-negotiable criterion in building selection for government and larger corporate tenants, sustainability was not yet a core business value for smaller organisations – whilst they could see it as an emerging issue, they wanted detailed cost-benefit analyses, pay-back calculations of proposed technologies and, ideally, wished they could trial the technology first-hand in some way. Although extremely interested in learning more, most participants reported relatively minimal knowledge of specific sustainability features, designs or products. In discussions about different sustainable technologies (e.g., waterless urinals, green-rated carpets), participants frequently commented that they knew little about the technology, had not heard of it or were not sure exactly how it worked. Whilst participants viewed sustainable commercial buildings as the future, they had varied expectations about the fate of existing older buildings – most felt that they would have to be retrofitted at some point to meet market expectations and predicted the emergence of a ‘non-sustainability discount’ for residing in a building without sustainable features. Discussion This research offers a beginning point for understanding the difficulty of integrating green technology in older commercial buildings. Tenants currently have limited understandings of technology and potential building performance outcomes, which ultimately could impede the implementation of sustainable initiatives in older buildings. Whilst the commercial property market is interested in learning about sustainability in the built environment, the findings highlight the importance of developing a strong business case, communication and transition plan for implementing sustainability retrofits in existing commercial buildings.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is a need for research and development into the more effective use of simulation as a decision-support tool. Despite significant research, persistent limitations in process and software inhibit the integration of energy simulation in early architectural design. This paper presents a green star case study to highlight the obstacles commonly encountered with current integration strategies. It then examines simulation-based design in the aerospace industry, which has overcome similar limitations. Finally, it proposes a design system based on this contrasting approach, coupling parametric modelling and energy simulation software for rapid and iterative performance assessment of early design options.
Resumo:
There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
Resumo:
This paper outlines a study to determine the correlation between the LA10(18hour) and other road traffic noise indicators. It is based on a database comprising of 404 measurement locations including 947 individual days of valid noise measurements across numerous circumstances taken between November 2001 and November 2007. This paper firstly discusses the need and constraints on the indicators and their nature of matching a suitable indicator to the various road traffic noise dynamical characteristics. The paper then presents a statistical analysis of the road traffic noise monitoring data, correlating various indicators with the LA10(18hour) statistical indicator and provides a comprehensive table of linear correlations. There is an extended analysis on relationships across the night time period. The paper concludes with a discussion on the findings.
Resumo:
In this paper, we examine the use of a Kalman filter to aid in the mission planning process for autonomous gliders. Given a set of waypoints defining the planned mission and a prediction of the ocean currents from a regional ocean model, we present an approach to determine the best, constant, time interval at which the glider should surface to maintain a prescribed tracking error, and minimizing time on the ocean surface. We assume basic parameters for the execution of a given mission, and provide the results of the Kalman filter mission planning approach. These results are compared with previous executions of the given mission scenario.
Resumo:
Subtropical south-east Queensland’s expanding population is expected to lead to a demand for an additional 754,000 dwellings by 2031. A legacy of poor housing design, minimal building regulations, an absence of building performance evaluation and various social and market factors has lead to a high and growing penetration of, and reliance on, air conditioners to provide comfort in this relatively benign climate. This reliance impacts on policy goals to adapt to and mitigate against global warming, electricity infrastructure investment and household resilience. Based on the concept of bioclimatic design, this field study scrutinizes eight non-air conditioned homes to develop a deeper understanding of the role of contemporary passive solar architecture in the delivery of thermally comfortable and resilient homes in the subtropics. These homes were found to provide inhabitants with an acceptable level of thermal comfort (18-28oC) for 77 – 97% of the year. Family expectations and experiences of comfort, and the various design strategies utilized were compared against the measured performance outcomes. This comparison revealed issues that limited quantification and implementation of design intent and highlighted factors that constrained system optimisation.
Resumo:
This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification.
Resumo:
Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.
Resumo:
Ocean processes are complex and have high variability in both time and space. Thus, ocean scientists must collect data over long time periods to obtain a synoptic view of ocean processes and resolve their spatiotemporal variability. One way to perform these persistent observations is to utilise an autonomous vehicle that can remain on deployment for long time periods. However, such vehicles are generally underactuated and slow moving. A challenge for persistent monitoring with these vehicles is dealing with currents while executing a prescribed path or mission. Here we present a path planning method for persistent monitoring that exploits ocean currents to increase navigational accuracy and reduce energy consumption.