153 resultados para Tumors Growth Mathematical models
Resumo:
A recent study by Korolev et al. [Nat. Rev. Cancer, 14:371–379, 2014] evidences that the Allee effect—in its strong form, the requirement of a minimum density for cell growth—is important in the spreading of cancerous tumours. We present one of the first mathematical models of tumour invasion that incorporates the Allee effect. Based on analysis of the existence of travelling wave solutions to this model, we argue that it is an improvement on previous models of its kind. We show that, with the strong Allee effect, the model admits biologically relevant travelling wave solutions, with well-defined edges. Furthermore, we uncover an experimentally observed biphasic relationship between the invasion speed of the tumour and the background extracellular matrix density.
Resumo:
In the context of increasing threats to the sensitive marine ecosystem by toxic metals, this study investigated the metal build-up on impervious surfaces specific to commercial seaports. The knowledge generated in this study will contribute to managing toxic metal pollution of the marine ecosystem. The study found that inter-modal operations and main access roadway had the highest loads followed by container storage and vehicle marshalling sites, while the quay line and short term storage areas had the lowest. Additionally, it was found that Cr, Al, Pb, Cu and Zn were predominantly attached to solids, while significant amount of Cu, Pb and Zn were found as nutrient complexes. As such, treatment options based on solids retention can be effective for some metal species, while ineffective for other species. Furthermore, Cu and Zn are more likely to become bioavailable in seawater due to their strong association with nutrients. Mathematical models to replicate the metal build-up process were also developed using experimental design approach and partial least square regression. The models for Cr and Pb were found to be reliable, while those for Al, Zn and Cu were relatively less reliable, but could be employed for preliminary investigations.
Resumo:
Assessing build-up and wash-off process uncertainty is important for accurate interpretation of model outcomes to facilitate informed decision making for developing effective stormwater pollution mitigation strategies. Uncertainty inherent to pollutant build-up and wash-off processes influences the variations in pollutant loads entrained in stormwater runoff from urban catchments. However, build-up and wash-off predictions from stormwater quality models do not adequately represent such variations due to poor characterisation of the variability of these processes in mathematical models. The changes to the mathematical form of current models with the incorporation of process variability, facilitates accounting for process uncertainty without significantly affecting the model prediction performance. Moreover, the investigation of uncertainty propagation from build-up to wash-off confirmed that uncertainty in build-up process significantly influences wash-off process uncertainty. Specifically, the behaviour of particles <150µm during build-up primarily influences uncertainty propagation, resulting in appreciable variations in the pollutant load and composition during a wash-off event.