306 resultados para Treadmill running
Resumo:
This study was designed to determine the Intraocular Pressure (IOP) response to differing levels of dehydration. Seven males participated in a 90 minute treadmill walk (5 km/h and 1 % grade) in both a cool (22 °C) and hot (43 °C) climate. At Baseline and at 30 minute intervals measurements of IOP, by tonometery, and indicators of hydration status (nude weight and plasma osmolality (Posm)) were taken. Body temperature and heart rate were also measured at these time points. Statistically significant interactions (time point (4) by trial (2)) were observed for IOP (F = 10.747, p = 0.009) and body weight loss (F = 50.083, p < 0.001) to decrease, and Posm (F = 34.867, p < 0.001) to increase, by a significantly greater amount during the hot trial compared to the cool. A univariate general linear model showed a significant relationship between IOP and body weight loss (F = 37.63, p < 0.001) and Posm (F = 38.53, p < 0.001). A significant interaction was observed for body temperature (F = 20.908, p < 0.001) and heart rate (F = 25.487, p < 0.001) between the trials and time points, but there was negligible association between these variables and IOP (Pearson correlation coefficient < ±0.5). The present study provides evidence to suggest that IOP is influenced by hydration status.
Resumo:
With significant population growth experienced in South East Queensland over the past two decades and a high rate of growth expected to continue in coming decades, the Queensland Government is promoting urban consolidation planning policies to manage growth sustainably. Multi-residential buildings will play an important role in facilitating the increased densities which urban consolidation policies imply. However, a major flood event in January 2011 has brought to light the vulnerability of certain types of multi-residential typologies to power outages. The crisis conditions exposed how contemporary building design and construction practices, coupled with regulatory and planning issues, appear to have compromised the resilience and habitability of multi-storey residential buildings. In the greater urban area of Brisbane, Queensland, the debilitating dependence that certain types of apartment buildings have on mains electricity was highlighted by residents’ experiences of the Brisbane River flood disaster, before, during and after the event. This research examined high density residential buildings in West End, Brisbane, an inner city suburb which was severely affected by the flood and is earmarked for significant urban densification under the Brisbane City Plan. Medium-to-high-density residential buildings in the suburb were mapped in flooded and non-flooded locations and a database containing information about the buildings was created. Parameters included date of construction, number of storeys, systems of access and circulation, and potential for access to natural light and ventilation for habitable areas. A series of semi-structured interviews were conducted with residents involved in the owners’ management committees of several buildings to verify information the mapping could not provide. The interviews identified a number of critical systems failures due to power outage which had a significant impact on residents’ wellbeing, comfort and safety. Building services such as lifts, running water, fire alarms, security systems and air-conditioning ceased to operate when power was disconnected to neighbourhoods and buildings in anticipation of rising flood waters. Lack of access to buildings and dwellings, lack of safety, lack of building security, and lack of thermal comfort affected many residents whether or not their buildings were actually subjected to inundation, with some buildings rendered uninhabitable for a prolonged period. The extent of the impact on residents was dramatically influenced by the scale and type of building inhabited, with those dwelling in buildings under a 25m height limit, with a single lift, found to be most affected. The energy-dependency and strong trend of increasing power demands of high-rise buildings is well-documented. Extended electricity outages such as the one brought about by the 2011 flood in Queensland are likely to happen more frequently than the 50-year average of the flood event itself. Electricity blackouts can result from a number of man-made or natural causes, including shortages caused by demand exceeding supply. This paper highlights the vulnerability of energy-dependent buildings to power outages and investigates options for energy security for occupants of multi-storey buildings and makes recommendations to increase resilience and general liveability in multi-residential buildings in the subtropics through design modifications.
Resumo:
Purpose: Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and alpha-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. Methods: Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d.wk(-1) at similar to 70% V (over dot)O(2max) for up to 90 min.d(-1) for 14 wk. Results: Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor F coactivator 1 alpha (PGC-1 alpha) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1 alpha mRNA, PGC-1 alpha and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. Conclusions: Vitamin E and alpha-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.
Resumo:
The effects of increased training (IT) load on plasma concentrations of lipopolysaccharides (LPS), proinflammatory cytokines, and anti-LPS antibodies during exercise in the heat were investigated in 18 male runners, who performed 14 days of normal training (NT) or 14 days of 20% IT load in 2 equal groups. Before (trial 1) and after (trial 2) the training intervention, all subjects ran at 70% maximum oxygen uptake on a treadmill under hot (35 degrees C) and humid (similar to 40%) conditions, until core temperature reached 39.5 degrees C or volitional exhaustion. Venous blood samples were drawn before, after, and 1.5 h after exercise. Plasma LPS concentration after exercise increased by 71% (trial 1, p < 0.05) and 21% (trial 2) in the NT group and by 92% (trial 1, p < 0.01) and 199% (trial 2, p < 0.01) in the IT group. Postintervention plasma LPS concentration was 35% lower before exercise (p < 0.05) and 47% lower during recovery (p < 0.01) in the IT than in the NT group. Anti-LPS IgM concentration during recovery was 35% lower in the IT than in the NT group (p < 0.05). Plasma interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha concentrations after exercise (IL-6, 3-7 times, p < 0.01, and TNF-alpha, 33%, p < 0.01) and during recovery (IL-6, 2-4 times, p < 0.05, and TNF-alpha, 30%, p < 0.01) were higher than at rest within each group. These data suggest that a short-term tolerable increase in training load may protect against developing endotoxemia during exercise in the heat.
Resumo:
Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.
Resumo:
Each year, organizations in Australian mining industry (asset intensive industry) spend substantial amount of capital (A$86 billion in 2009-10) (Statistics, 2011) in acquiring engineering assets. Engineering assets are put to use in operations to generate value. Different functions (departments) of an organization have different expectations and requirements from each of the engineering asset e.g. return on investment, reliability, efficiency, maintainability, low cost of running the asset, low or nil environmental impact and easy of disposal, potential salvage value etc. Assets are acquired from suppliers or built by service providers and or internally. The process of acquiring assets is supported by procurement function. One of the most costly mistakes that organizations can make is acquiring the inappropriate or non-conforming assets that do not fit the purpose. The root cause of acquiring non confirming assets belongs to incorrect acquisition decision and the process of making decisions. It is very important that an asset acquisition decision is based on inputs and multi-criteria of each function within the organization which has direct or indirect impact on the acquisition, utilization, maintenance and disposal of the asset. Literature review shows that currently there is no comprehensive process framework and tool available to evaluate the inclusiveness and breadth of asset acquisition decisions that are taken in the Mining Organizations. This thesis discusses various such criteria and inputs that need to be considered and evaluated from various functions within the organization while making the asset acquisition decision. Criteria from functions such as finance, production, maintenance, logistics, procurement, asset management, environment health and safety, material management, training and development etc. need to be considered to make an effective and coherent asset acquisition decision. The thesis also discusses a tool that is developed to be used in the multi-criteria and cross functional acquisition decision making. The development of multi-criteria and cross functional inputs based decision framework and tool which utilizes that framework to formulate cross functional and integrated asset acquisition decisions are the contribution of this research.
Resumo:
Background: Hamstring strain injuries are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of running. The impact of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. Purpose: To determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development and impulse 30, 50 and 100ms after the onset of myoelectrical activity or torque development in the previously injured limb compared to the uninjured limb. Study design: Case-control study Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, injured limb = 312.27 ± 191.78Nm.s-1 vs. uninjured limb = 518.54 ± 172.81Nm.s-1, p=0.008; IMP, injured limb = 0.73 ± 0.30 Nm.s vs. uninjured limb = 0.97 ± 0.23 Nm.s, p=0.005) and 100ms (RTD, injured limb = 280.03 ± 131.42Nm.s-1 vs. uninjured limb = 460.54.54 ± 152.94Nm.s-1,p=0.001; IMP, injured limb = 2.15 ± 0.89 Nm.s vs. uninjured limb = 3.07 ± 0.63 Nm.s, p<0.001) after the onset of contraction. Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, normalised iEMG activity (x1000), injured limb = 26.25 ± 10.11 vs. uninjured limb 33.57 ± 8.29, p=0.009; -1800.s-1, normalised iEMG activity (x1000), injured limb = 31.16 ± 10.01 vs. uninjured limb 39.64 ± 8.36, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during slow maximal eccentric contraction compared to the contralateral uninjured limb. Lower myoelectrical activity was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings could have important implications for hamstring strain injury and re-injury. Particularly, given the importance of high levels of muscle activity to bring about specific muscular adaptations, lower levels of myoelectrical activity may limit the adaptive response to rehabilitation interventions and suggest greater attention be given to neural function of the knee flexors following hamstring strain injury.
Resumo:
Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.
Resumo:
A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fastmoving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment due to the use of non-deterministic readily-available hardware (such as 802.11-based wireless) and inaccurate clock synchronisation protocols (such as Network Time Protocol (NTP)). As a result, the synchronisation of the clocks between robots can be out by tens-to-hundreds of milliseconds making correlation of data difficult and preventing the possibility of the units performing synchronised actions such as triggering cameras or intricate swarm manoeuvres. In this thesis, a complete data fusion unit is designed, implemented and tested. The unit, named BabelFuse, is able to accept sensor data from a number of low-speed communication buses (such as RS232, RS485 and CAN Bus) and also timestamp events that occur on General Purpose Input/Output (GPIO) pins referencing a submillisecondaccurate wirelessly-distributed "global" clock signal. In addition to its timestamping capabilities, it can also be used to trigger an attached camera at a predefined start time and frame rate. This functionality enables the creation of a wirelessly-synchronised distributed image acquisition system over a large geographic area; a real world application for this functionality is the creation of a platform to facilitate wirelessly-distributed 3D stereoscopic vision. A ‘best-practice’ design methodology is adopted within the project to ensure the final system operates according to its requirements. Initially, requirements are generated from which a high-level architecture is distilled. This architecture is then converted into a hardware specification and low-level design, which is then manufactured. The manufactured hardware is then verified to ensure it operates as designed and firmware and Linux Operating System (OS) drivers are written to provide the features and connectivity required of the system. Finally, integration testing is performed to ensure the unit functions as per its requirements. The BabelFuse System comprises of a single Grand Master unit which is responsible for maintaining the absolute value of the "global" clock. Slave nodes then determine their local clock o.set from that of the Grand Master via synchronisation events which occur multiple times per-second. The mechanism used for synchronising the clocks between the boards wirelessly makes use of specific hardware and a firmware protocol based on elements of the IEEE-1588 Precision Time Protocol (PTP). With the key requirement of the system being submillisecond-accurate clock synchronisation (as a basis for timestamping and camera triggering), automated testing is carried out to monitor the o.sets between each Slave and the Grand Master over time. A common strobe pulse is also sent to each unit for timestamping; the correlation between the timestamps of the di.erent units is used to validate the clock o.set results. Analysis of the automated test results show that the BabelFuse units are almost threemagnitudes more accurate than their requirement; clocks of the Slave and Grand Master units do not di.er by more than three microseconds over a running time of six hours and the mean clock o.set of Slaves to the Grand Master is less-than one microsecond. The common strobe pulse used to verify the clock o.set data yields a positive result with a maximum variation between units of less-than two microseconds and a mean value of less-than one microsecond. The camera triggering functionality is verified by connecting the trigger pulse output of each board to a four-channel digital oscilloscope and setting each unit to output a 100Hz periodic pulse with a common start time. The resulting waveform shows a maximum variation between the rising-edges of the pulses of approximately 39¥ìs, well below its target of 1ms.
Resumo:
Purpose: To investigate the effects of an acute multinutrient supplement on game-based running performance, peak power output, anaerobic by-products, hormonal profiles, markers of muscle damage, and perceived muscular soreness before, immediately after, and 24 h following competitive rugby union games. Methods: Twelve male rugby union players ingested either a comprehensive multinutrient supplement (SUPP), [RE-ACTIVATE:01], or a placebo (PL) for 5 d. Participants then performed a competitive rugby union game (with global positioning system tracking), with associated blood draws and vertical jump assessments pre, immediately post and 24 h following competition. Results: SUPP ingestion resulted in moderate to large effects for augmented 1st half very high intensity running (VHIR) mean speed (5.9 ± 0.4 vs 4.8 ± 2.3 m·min–1; d= 0.93). Further, moderate increases in 2nd half VHIR distance (137 ± 119 vs 83 ± 89 m; d= 0.73) and VHIR mean speed (5.9 ± 0.6 v 5.3 ± 1.7 m·min–1; d= 0.56) in SUPP condition were also apparent. Postgame aspartate aminotransferase (AST; 44.1 ± 11.8 vs 37.0 ± 3.2 UL; d= 1.16) and creatine kinase (CK; 882 ± 472 vs. 645 ± 123 UL; d= 0.97) measures demonstrated increased values in the SUPP condition, while AST and CK values correlated with 2nd half VHIR distance (r= –0.71 and r= –0.76 respectively). Elevated C-reactive protein (CRP) was observed postgame in both conditions; however, it was significantly blunted with SUPP (P= .05). Conclusions: These findings suggest SUPP may assist in the maintenance of VHIR during rugby union games, possibly via the buffering qualities of SUPP ingredients. However, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anticatabolic properties of the supplement.
Resumo:
Purpose: To assess the effects of pre-cooling volume on neuromuscular function and performance in free-paced intermittent-sprint exercise in the heat. Methods: Ten male, teamsport athletes completed four randomized trials involving an 85-min free-paced intermittentsprint exercise protocol in 33°C±33% relative humidity. Pre-cooling sessions included whole body (WB), head+hand (HH), head (H) and no cooling (CONT), applied for 20-min pre-exercise and 5-min mid exercise. Maximal voluntary contractions (MVC) were assessed pre- and postintervention and mid- and post-exercise. Exercise performance was assessed with sprint times, % decline and distances covered during free-paced bouts. Measures of core(Tc) and skin (Tsk) temperatures, heart rate, perceptual exertion and thermal stress were monitored throughout. Venous and capillary blood was analyzed for metabolite, muscle damage and inflammatory markers. Results: WB pre-cooling facilitated the maintenance of sprint times during the exercise protocol with reduced % decline (P=0.04). Mean and total hard running distances increased with pre cooling 12% compared to CONT (P<0.05), specifically, WB was 6-7% greater than HH (P=0.02) and H (P=0.001) respectively. No change was evident in mean voluntary or evoked force pre- to post-exercise with WB and HH cooling (P>0.05). WB and HH cooling reduced Tc by 0.1-0.3°C compared to other conditions (P<0.05). WB Tsk was suppressed for the entire session(P=0.001). HR responses following WB cooling were reduced(P=0.05; d=1.07) compared to CONT conditions during exercise. Conclusion: A relationship between pre-cooling volume and exercise performance seems apparent, as larger surface area coverage augmented subsequent free-paced exercise capacity, in conjunction with greater suppression of physiological load. Maintenance of MVC with pre-cooling, despite increased work output suggests the role of centrally-mediated mechanisms in exercise pacing regulation and subsequent performance.
Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat
Resumo:
This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
Resumo:
Aim: To determine the effects of an acute multi-nutrient supplement on physiological, performance and recovery responses to intermittent-sprint running and muscular damage during rugby union matches. Methods: Using a randomised, double-blind, cross-over design, twelve male rugby union players ingested either 75 g of a comprehensive multi-nutrient supplement (SUPP), [Musashi] or 1 g of a taste and carbohydrate matched placebo (PL) for 5 days pre-competition. Competitive rugby union game running performance was then measured using 1 Hz GPS data (SPI10, SPI elite, GPSports), in addition to associated blood draws, vertical jump assessments and ratings of perceived muscular soreness (MS) pre, immediately post and 24 h post-competition. Baseline (BL) GPS data was collected during six competition rounds preceding data collection. Results: No significant differences were observed between supplement conditions for all game running, vertical jump, and ratings of perceived muscular soreness. However, effect size analysis indicated SUPP ingestion increased 1st half very high intensity running (VHIR) mean speed (d = 0.93) and 2nd half relative distance (m/min) (d = 0.97). Further, moderate increases in 2nd half VHIR distance (d = 0.73), VHIR m/min (d = 0.70) and VHIR mean speed (d = 0.56) in SUPP condition were also apparent. Moreover, SUPP demonstrated significant increases in 2nd half dist m/min, total game dist m/min and total game HIR m/min compared with BL data (P < 0.05). Further, large ES increases in VHIR time (d = 0.88) and moderate increases in 2nd half HIR m/min (d = 0.65) and 2nd half VHIR m/min (d = 0.74) were observed between SUPP and BL. Post-game aspartate aminotransferase (AST) (d = 1.16) and creatine kinase (CK) (d = 0.97) measures demonstrated increased ES values with SUPP, while AST and CK values correlated with 2nd half VHIR distance (r = −0.71 and r = −0.76 respectively). Elevated c-reactive protein (CRP) was observed post-game in both conditions, however was significantly blunted with SUPP (P = 0.05). Additionally, pre-game (d = 0.98) and post-game (d = 0.96) increases in cortisol (CORT) were apparent with SUPP. No differences were apparent between conditions for pH, lactate, glucose, HCO3, vertical jump assessments and MS (P > 0.05). Conclusion: These findings suggest SUPP may assist in the maintenance of VHIR speeds and distances covered during rugby union games, possibly via the buffering qualities of SUPP ingredients (i.e. caffeine, creatine, bicarbonate). While the mechanisms for these findings are unclear, the similar pH between conditions despite additional VHIR during SUPP may support this conclusion. Finally, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anti-catabolic properties of supplementation.
Resumo:
Amongst the most prominent uses of Twitter at present is its role in the discussion of widely televised events: Twitter’s own statistics for 2011, for example, list major entertainment spectacles (the MTV Music Awards, the BET Awards) and sports matches (the UEFA Champions League final, the FIFA Women’s World Cup final) amongst the events generating the most tweets per second during the year (Twitter, 2011). User activities during such televised events constitute a specific, unique category of Twitter use, which differs clearly from the other major events which generate a high rate of tweets per second (such as crises and breaking news, from the Japanese earthquake and tsunami to the death of Steve Jobs), as preliminary research has shown. During such major media events, by contrast, Twitter is used most predominantly as a technology of fandom instead: it serves in the first place as a backchannel to television and other streaming audiovisual media, enabling users offer their own running commentary on the universally shared media text of the event broadcast as it unfolds live. Centrally, this communion of fans around the shared text is facilitated by the use of Twitter hashtags – unifying textual markers which are now often promoted to prospective audiences by the broadcasters well in advance of the live event itself. This paper examines the use of Twitter as a technology for the expression of shared fandom in the context of a major, internationally televised annual media event: the Eurovision Song Contest. It constitutes a highly publicised, highly choreographed media spectacle whose eventual outcomes are unknown ahead of time and attracts a diverse international audience. Our analysis draws on comprehensive datasets for the ‘official’ event hashtags, #eurovision, #esc, and #sbseurovision. Using innovative methods which combine qualitative and quantitative approaches to the analysis of Twitter datasets containing several hundreds of thousands, we examine overall patterns of participation to discover how audiences express their fandom throughout the event. Minute-by-minute tracking of Twitter activity during the live broadcasts enables us to identify the most resonant moments during each event; we also examine the networks of interaction between participants to detect thematically or geographically determined clusters of interaction, and to identify the most visible and influential participants in each network. Such analysis is able to provide a unique insight into the use of Twitter as a technology for fandom and for what in cultural studies research is called ‘audiencing’: the public performance of belonging to the distributed audience for a shared media event. Our work thus contributes to the examination of fandom practices led by Henry Jenkins (2006) and other scholars, and points to Twitter as an important new medium facilitating the connection and communion of such fans.
Resumo:
Objective. To describe physical activity participation in three Queensland regional communities. Design. Cross-sectional mail survey of randomly selected residents, stratified by age and sex. Setting. Esk, Mareeba and Mount Isa. Participants. 1219 (58% female) adults, with a mean age 46.7 (SD 14.7) years. Main outcome measures. Proportion of people inactive, meeting Australian activity guidelines (a minimum of 150 minutes/week and 5 sessions/week), and walking a dog daily; time spent walking and cycling for transport; location and type of recreational physical activities. Results. Overall, 18% of respondents were inactive, with the highest proportions among women (22.3%) and older adults in Mount Isa (24.3%). The proportion meeting activity guidelines was 47% with the lowest proportions among women in Mount Isa (40.4%). Although 63% reported owning a dog, only 22% reported walking a dog daily. Few people reported walking or cycling for transport. The most common types of activities were walking, home-based exercise, running/jogging, and swimming, and the most common location was at or near home. Conclusions. Physical activity levels were lower in these regional communities than the state average. The findings indicate a need for physical activity policy and intervention strategies targeting regional and rural areas. This could focus on women and older adults, dog walking, and physical activity opportunities in or near the home.