308 resultados para Travel behavior.
Resumo:
Background: There is a well developed literature on research investigating the relationship between various driving behaviours and road crash involvement. However, this research has predominantly been conducted in developed economies dominated by western types of cultural environments. To date no research has been published that has empirically investigated this relationship within the context of the emerging economies such as Oman. Objective: The present study aims to investigate driving behaviour as indexed in the Driving Behaviour Questionnaire (DBQ) among a group of Omani university students and staff. Methods: A convenience non-probability self- selection sampling approach was utilized with Omani university students and staff. Results: A total of 1003 Omani students (n= 632) and staff (n=371) participated in the survey. Factor analysis of the BDQ revealed four main factors that were errors, speeding violation, lapses and aggressive violation. In the multivariate logistic backward regression analysis, the following factors were identified as significant predictors of being involved in causing at least one crash: driving experience, history of offences and two DBQ components i.e. errors and aggressive violation. Conclusion: This study indicates that errors and aggressive violation of the traffic regulations as well as history of having traffic offences are major risk factors for road traffic crashes among the sample. While previous international research has demonstrated that speeding is a primary cause of crashing, in the current context, the results indicate that an array of factors is associated with crashes. Further research using more rigorous methodology is warranted to inform the development of road safety countermeasures in Oman that improves overall traffic safety culture.
Resumo:
Crowds of noncombatants play a large and increasingly recognized role in modern military operations and often create substantial difficulties for the combatant forces involved. However, realistic models of crowds are essentially absent from current military simulations. To address this problem, the authors are developing a crowd simulation capable of generating crowds of noncombatant civilians that exhibit a variety of realistic individual and group behaviors at differing levels of fidelity. The crowd simulation is interoperable with existing military simulations using a standard, distributed simulation architecture. Commercial game technology is used in the crowd simulation to model both urban terrain and the physical behaviors of the human characters that make up the crowd. The objective of this article is to present the design and development process of a simulation that integrates commercially available game technology with current military simulations to generate realistic and believable crowd behavior.
Resumo:
The ability of adult cotton bollworm, Helicoverpa armigera (Hübner), to distinguish and respond to enantiomers of α-pinene was investigated with electrophysiological and behavioral methods. Electroantennogram recordings using mixtures of the enantiomers at saturating dose levels, and single unit electrophysiology, indicated that the two forms were detected by the same receptor neurons. The relative size of the electroantennogram response was higher for the (−) compared to the (+) form, indicating greater affinity for the (−) form at the level of the dendrites. Behavioral assays investigated the ability of moths to discriminate between, and respond to the (+) and (−) forms of α-pinene. Moths with no odor conditioning showed an innate preference for (+)-α-pinene. This preference displayed by naïve moths was not significantly different from the preferences of moths conditioned on (+)-α-pinene. However, we found a significant difference in preference between moths conditioned on the (−) enantiomer compared to naïve moths and moths conditioned on (+)-α-pinene, showing that learning plays an important role in the behavioral response. Moths are less able to distinguish between enantiomers of α-pinene than different odors (e.g., phenylacetaldehyde versus (−)-α-pinene) in learning experiments. The relevance of receptor discrimination of enantiomers and learning ability of the moths in host plant choice is discussed.
Resumo:
The rapid growth of visual information on Web has led to immense interest in multimedia information retrieval (MIR). While advancement in MIR systems has achieved some success in specific domains, particularly the content-based approaches, general Web users still struggle to find the images they want. Despite the success in content-based object recognition or concept extraction, the major problem in current Web image searching remains in the querying process. Since most online users only express their needs in semantic terms or objects, systems that utilize visual features (e.g., color or texture) to search images create a semantic gap which hinders general users from fully expressing their needs. In addition, query-by-example (QBE) retrieval imposes extra obstacles for exploratory search because users may not always have the representative image at hand or in mind when starting a search (i.e. the page zero problem). As a result, the majority of current online image search engines (e.g., Google, Yahoo, and Flickr) still primarily use textual queries to search. The problem with query-based retrieval systems is that they only capture users’ information need in terms of formal queries;; the implicit and abstract parts of users’ information needs are inevitably overlooked. Hence, users often struggle to formulate queries that best represent their needs, and some compromises have to be made. Studies of Web search logs suggest that multimedia searches are more difficult than textual Web searches, and Web image searching is the most difficult compared to video or audio searches. Hence, online users need to put in more effort when searching multimedia contents, especially for image searches. Most interactions in Web image searching occur during query reformulation. While log analysis provides intriguing views on how the majority of users search, their search needs or motivations are ultimately neglected. User studies on image searching have attempted to understand users’ search contexts in terms of users’ background (e.g., knowledge, profession, motivation for search and task types) and the search outcomes (e.g., use of retrieved images, search performance). However, these studies typically focused on particular domains with a selective group of professional users. General users’ Web image searching contexts and behaviors are little understood although they represent the majority of online image searching activities nowadays. We argue that only by understanding Web image users’ contexts can the current Web search engines further improve their usefulness and provide more efficient searches. In order to understand users’ search contexts, a user study was conducted based on university students’ Web image searching in News, Travel, and commercial Product domains. The three search domains were deliberately chosen to reflect image users’ interests in people, time, event, location, and objects. We investigated participants’ Web image searching behavior, with the focus on query reformulation and search strategies. Participants’ search contexts such as their search background, motivation for search, and search outcomes were gathered by questionnaires. The searching activity was recorded with participants’ think aloud data for analyzing significant search patterns. The relationships between participants’ search contexts and corresponding search strategies were discovered by Grounded Theory approach. Our key findings include the following aspects: - Effects of users' interactive intents on query reformulation patterns and search strategies - Effects of task domain on task specificity and task difficulty, as well as on some specific searching behaviors - Effects of searching experience on result expansion strategies A contextual image searching model was constructed based on these findings. The model helped us understand Web image searching from user perspective, and introduced a context-aware searching paradigm for current retrieval systems. A query recommendation tool was also developed to demonstrate how users’ query reformulation contexts can potentially contribute to more efficient searching.
Resumo:
This study used data from Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) to investigate how parent report of children’s emotional and cognitive regulation at age 2-3 years was associated with teacher ratings of children’s prosocial behaviors in the early years of school. A sample of 2,392 children was drawn from the LSAC Birth Cohort for the analyses. The analyses used structural equation modeling to estimate parameters of the relationships between key variables. Within the model, estimates of mother-reported emotional and cognitive regulation at age 2 to 3 years were significantly associated with teacher-reported prosocial behavior at 6 to 7 years. Emotional regulation was a slightly stronger indicator of prosocial behavior than cognitive regulation. Being female and from a family with a higher socioeconomic position were also associated with higher levels of prosocial behavior. Results are discussed in relation to the role of early childhood teachers in fostering children’s self-regulatory behaviors and in providing environments in which empathic and prosocial behaviors are modeled, guided, and scaffolded so that foundations are laid for caring behaviors to be understood and internalized by children.
Resumo:
Process-aware information systems (PAISs) can be configured using a reference process model, which is typically obtained via expert interviews. Over time, however, contextual factors and system requirements may cause the operational process to start deviating from this reference model. While a reference model should ideally be updated to remain aligned with such changes, this is a costly and often neglected activity. We present a new process mining technique that automatically improves the reference model on the basis of the observed behavior as recorded in the event logs of a PAIS. We discuss how to balance the four basic quality dimensions for process mining (fitness, precision, simplicity and generalization) and a new dimension, namely the structural similarity between the reference model and the discovered model. We demonstrate the applicability of this technique using a real-life scenario from a Dutch municipality.
Resumo:
Researchers examined the sun-protective intentions and behavior of young, Caucasian, Australian sportswomen aged between 17 and 35 years (N = 100). The study adopted a 2 x 2 experimental design, comparing group norms (supportive vs. non-supportive) and image norms (tanned vs. pale) related to sun protection and taking into account group identification with friends and peers in the sport. While no significant findings emerged involving image norms, regression analyses revealed a significant two-way interaction for group norm x identification on recreational sportswomen's intentions to engage in sun protection in the next fortnight. Participants identifying strongly with their group had stronger intentions to engage in sun protection when exposed to a norm reflecting fellow recreational sportswomen engaging in sun-protective actions in comparison to those exposed to a non-supportive group. In addition, while prior intentions to engage in sun protection were not significantly related to sun-protection behavior, post-manipulation intentions after exposure to the sun-protective information that was provided were significantly related to follow-up behavior. Overall, the findings supported the importance of group-based social influences, rather than tanned media images, on sun-protective decisions among young recreational sportswomen and provided a targeted source for intervention strategies encouraging sun safety among this at-risk group for repeated sun exposure.
Resumo:
Evidence within Australia and internationally suggests parenthood as a risk factor for inactivity; however, research into understanding parental physical activity is scarce. Given that active parents can create active families and social factors are important for parents’ decision making, the authors investigated a range of social influences on parents’ intentions to be physically active. Parents (N = 580; 288 mothers and 292 fathers) of children younger than 5 years completed an extended Theory of Planned Behavior questionnaire either online or paper based. For both genders, attitude, control factors, group norms, friend general support, and an active parent identity predicted intentions, with social pressure and family support further predicting mothers’ intentions and active others further predicting fathers’ intentions. Attention to these factors and those specific to the genders may improve parents’ intentions to be physically active, thus maximizing the benefits to their own health and the healthy lifestyle practices for other family members.
Resumo:
BACKGROUND: Donor retention is vital to blood collection agencies. Past research has highlighted the importance of early career behavior for long-term donor retention, yet research investigating the determinants of early donor behavior is scarce. Using an extended Theory of Planned Behavior (TPB), this study sought to identify the predictors of first-time blood donors' early career retention. STUDY DESIGN AND METHODS: First-time donors (n = 256) completed three surveys on blood donation. The standard TPB predictors and self-identity as a donor were assessed 3 weeks (Time 1) and at 4 months (Time 2) after an initial donation. Path analyses examined the utility of the extended TPB to predict redonation at 4 and 8 months after initial donation. RESULTS: The extended TPB provided a good fit to the data. Post-Time 1 and 2 behavior was consistently predicted by intention to redonate. Further, intention was predicted by attitudes, perceived control, and self-identity (Times 1 and 2). Donors' intentions to redonate at Time 1 were the strongest predictor of intention to donate at Time 2, while donors' behavior at Time 1 strengthened self-identity as a blood donor at Time 2. CONCLUSION: An extended TPB framework proved efficacious in revealing the determinants of first-time donor retention in an initial 8-month period. The results suggest that collection agencies should intervene to bolster donors' attitudes, perceived control, and identity as a donor during this crucial post–first donation period.
Resumo:
Although transit travel time variability is essential for understanding the deterioration of reliability, optimising transit schedule and route choice; it has not attracted enough attention from the literature. This paper proposes public transport-oriented definitions of travel time variability and explores the distributions of public transport travel time using the Transit Signal Priority data. First, definitions of public transport travel time variability are established by extending the common definitions of variability in the literature and by using route and services data of public transport vehicles. Second, the paper explores the distribution of public transport travel time. A new approach for analysing the distributions involving all transit vehicles as well as vehicles from a specific route is proposed. The Lognormal distribution is revealed as the descriptors for public transport travel time from the same route and service. The methods described in this study could be of interest for both traffic managers and transit operators for planning and managing the transit systems.
Resumo:
Smart Card data from Automated Fare Collection system has been considered as a promising source of information for transit planning. However, literature has been limited to mining travel patterns from transit users and suggesting the potential of using this information. This paper proposes a method for mining spatial regular origins-destinations and temporal habitual travelling time from transit users. These travel regularity are discussed as being useful for transit planning. After reconstructing the travel itineraries, three levels of Density-Based Spatial Clustering of Application with Noise (DBSCAN) have been utilised to retrieve travel regularity of each of each frequent transit users. Analyses of passenger classifications and personal travel time variability estimation are performed as the examples of using travel regularity in transit planning. The methodology introduced in this paper is of interest for transit authorities in planning and managements
Resumo:
Australian authorities have set ambitious policy objectives to shift Australia’s current transport profile of heavy reliance on private motor cars to sustainable modes. Improving accessibility of public transport is a central component of that objective. Past studies on accessibility to public transport focus on walking time and/or waiting time. However, travellers’ perceptions of the interface leg journeys may depend not only on these direct and tangible factors but also on social and psychological factors. This paper extends previous research that identified five salient perspectives of rail access by means of a statement sorting activity and cluster analysis with a small sample of rail passengers in three Australian cities (Zuniga et al, 2013). This study collects a new data set including 144 responses from Brisbane and Melbourne to an online survey made up of a Likert-scaled statement sorting exercise and questionnaire. It employs factor analysis to examine the statement rankings and uncovers seven underlying factors in the exploratory manner, i.e., station, safety, access, transfer, service attitude, traveler’s physical activity levels, and environmental concern. Respondents from groups stratified by rail use frequency are compared in terms of their scores of those factors. Findings from this study indicate a need to re-conceptualize accessibility to intra-urban rail travel in agreement with current policy agenda, and to target behavioral intervention to multiple dimensions of accessibility influencing passengers’ travel choices. Arguments in this paper are not limited to intra-urban rail transit, but may also be relevant to public transport in general.
Resumo:
Australian authorities have set ambitious policy objectives to shift Australia’s current transport profile of heavy reliance on private motor cars to sustainable modes. Improving accessibility of public transport is a central component of that objective. Past studies on accessibility to public transport focus on walking time and/or waiting time. However, travellers’ perceptions of the interface leg journeys may depend not only on these direct and tangible factors but also on social and psychological factors. This paper extends previous research that identified five salient perspectives of rail access by means of a statement sorting activity and cluster analysis with a small sample of rail passengers in three Australian cities (Zuniga et al, 2013). This study collects a new data set including 144 responses from Brisbane and Melbourne to an online survey made up of a Likert-scaled statement sorting exercise and questionnaire. It employs factor analysis to examine the statement rankings and uncovers seven underlying factors in the exploratory manner, i.e., station, safety, access, transfer, service attitude, traveler’s physical activity levels, and environmental concern. Respondents from groups stratified by rail use frequency are compared in terms of their scores of those factors. Findings from this study indicate a need to re-conceptualize accessibility to intra-urban rail travel in agreement with current policy agenda, and to target behavioral intervention to multiple dimensions of accessibility influencing passengers’ travel choices. Arguments in this paper are not limited to intra-urban rail transit, but may also be relevant to public transport in general.
Resumo:
Travel time prediction has long been the topic of transportation research. But most relevant prediction models in the literature are limited to motorways. Travel time prediction on arterial networks is challenging due to involving traffic signals and significant variability of individual vehicle travel time. The limited availability of traffic data from arterial networks makes travel time prediction even more challenging. Recently, there has been significant interest of exploiting Bluetooth data for travel time estimation. This research analysed the real travel time data collected by the Brisbane City Council using the Bluetooth technology on arterials. Databases, including experienced average daily travel time are created and classified for approximately 8 months. Thereafter, based on data characteristics, Seasonal Auto Regressive Integrated Moving Average (SARIMA) modelling is applied on the database for short-term travel time prediction. The SARMIA model not only takes the previous continuous lags into account, but also uses the values from the same time of previous days for travel time prediction. This is carried out by defining a seasonality coefficient which improves the accuracy of travel time prediction in linear models. The accuracy, robustness and transferability of the model are evaluated through comparing the real and predicted values on three sites within Brisbane network. The results contain the detailed validation for different prediction horizons (5 min to 90 minutes). The model performance is evaluated mainly on congested periods and compared to the naive technique of considering the historical average.